Чтение онлайн

ЖАНРЫ

Вначале была аксиома. Гильберт. Основания математики
Шрифт:

Брауэр и топология

С 1908 по 1911 год Брауэр взял паузу в жестокой борьбе за интуиционизм и заложил основы новой математической дисциплины — топологии, «геометрии на резиновом листе» (как выразился Пуанкаре). Для начала он предложил несколько контрпримеров, о которые разбивались большинство результатов, полученных Артуром Шёнфлисом (1853-1928), другом Гильберта. И уже в 1911 году он представил теорему об инвариантности размерности с помощью бинепрерывного приложения, то есть гомеоморфизма, что положило конец сомнениям, зароненным Кантором, Пеано и Гильбертом: m-мерное и п-мерное пространства негомеоморфны, если m отличается от n. Они могут поддаваться биекции, но никогда не гомеоморфны, потому что эта биекция не будет непрерывной. Топология

демонстрировала торжество здравого смысла.

После каждой итерации кривая Г ильберта змеится все больше и больше, прежде чем (в пределе) полностью покрыть квадрат.

Вклад Гаусса, Римана и, наконец, Гильберта позволил геометрии окончательно освободиться от наследия Евклида и Канта (несмотря на протест Фреге). Брауэр предложил отказаться от априорного подхода Канта к пространству, но более решительно придерживался априорного подхода ко времени. Математика ведала свойствами времени, поскольку его ход сводился к арифметической последовательности: 0, 1, 2, 3, 4... 1 после 0, но до 2, и так далее.

Согласно Брауэру, нужно было восстановить конструктивистское видение математики Пуанкаре. Несмотря на перевод и адаптацию работ Кантора на французский язык, Пуанкаре получал шпильки в свой адрес со стороны Рассела и Цермело, которые называли его ретроградом, игнорирующим новый математический метод. Но и Пуанкаре не молчал, насмехаясь над логицистским течением: «Логика не стерильна, она порождает противоречия». Кроме того, он указывал на то, что если бы всю математику можно было вывести на одних только правилах логики, получилось бы, что математика была всего лишь гигантской тавтологией, логической истиной в стиле А = А. С его точки зрения, логика напоминала машину по производству сосисок: на входе помещают свинью, а на выходе получается вполне упорядоченная связка. Но математика работает не как пианола. Математическое доказательство представляло собой творческий механизм: благодаря интуиции мы способны доказать бесконечное число силлогизмов за конечное число шагов (принцип индукции). Именно этот переход от конечного к бесконечному определяет, по мнению Пуанкаре, чудо математики. Интуиция — это молния, которая освещает математику путь посреди ночи и позволяет ему изобретать математику. Посредством интуиции именно человеческий разум создает математические объекты.

Искусство математики заключается в том, чтобы найти этот особый случай, содержащий в себе все истоки обобщенности.

Давид Гильберт

Брауэр перенял эту живописную философию математики Пуанкаре, с которым лично встретился в 1909 году. В противоположность платонизму и логицизму, утверждающим, что математические истины открываются сами, интуиционизм утверждает, что на самом деле они изобретаются (этот тезис сближает его с формализмом). Однако на вопрос, где находится математическая точность, интуиционизм Брауэра отвечает: «разум», а формализм Гильберта: «бумага».

У Брауэра и Гильберта, которые познакомились во время отпуска в 1909 году, имелись две конфликтные темы: прежде всего это природа математики — как свободная конструкция человеческого понимания или как аксиоматическая теория — и роль принципа исключенного третьего в математике. Нерв интуиционизма именно в отрицании этого логического принципа, отсылающего к Аристотелю и утверждающего, что дизъюнкция пропозиции и ее отрицание — это логическая истина, то есть она всегда истинна, в любой модели или вселенной толкования (Av ¬A). Другими словами, либо А истинно, либо истинно отрицание А, потому что любой третий вариант систематически исключен (именно поэтому говорят об «исключенном третьем»). Наряду с принципом непротиворечия (¬(A^¬A)) и принципом идентичности ((перевернутое A)x(x = х)) этот принцип образовывал три классических закона рассуждения.

Однако для Брауэра это необязательно было так. Поскольку мы не знаем, содержит ли десятичное продолжение числа 20 нулей подряд, пропозиция «десятичное продолжение числа содержит 20 нулей подряд» не является (и в этом ключ к интуиционизму) ни истинной, ни ложной. Ее истинность на сегодняшний день не может быть определена. Один единомышленник Брауэра утверждал, что принцип исключенного третьего для такого типа пропозиций может быть справедливым для Бога (Он знает всю бесконечную последовательность знаков после запятой такой, как она есть), но такое невозможно для человеческой логики. Совершив разворот

на 180° по отношению к логистической догме, интуиционисты считали такую логику ответвлением математики, а не наоборот.

Этот образ мысли положил начало тому, что с тех пор известно как «интуиционистская логика», формализованная прилежным учеником Брауэра Арендом Гейтингом (1898— 1980). В классической логике двойное отрицание пропозиции равносильно пропозиции, то есть ¬¬А<->А. Но интуиционистская логика отрицает, что из двойного отрицания пропозиции можно вывести исходную пропозицию. Следовательно, ¬¬А->А не принимается. Этот интуиционистский пересмотр классической логики отвечает на вопрос: почему Брауэр отвергал рассуждения доведением до абсурда (к которым нередко прибегал Гильберт)? Доказательством ложности отрицания А не доказывалось, что А истинно, поскольку был оставлен принцип исключенного третьего.

Нидерландский математик считал справедливыми только конструктивные доказательства. Доказать, что отрицание теоремы противоречиво, — неравносильно доказательству, что теорема истинна, поскольку, прежде чем доказать последнее, нужно открыто сконструировать ее содержание. Для математиков-интуиционистов неконструктивные доказательства существования (доведением до абсурда) свидетельствуют о том, что в мире есть скрытое сокровище, но не указывают его местонахождение, поэтому такие доказательства имеют исключительно эвристическую ценность. Для существования математического объекта недостаточно, чтобы он не порождал никакого противоречия; нужно ввести эффективную процедуру его построения.

Парадоксы, открытые в рамках теории множеств, по мнению Брауэра, явно представляли собой опасность для чисто экзистенциальной математики. Не зря Кронекер всегда ожесточенно спорил с Кантором о том, что если не построить множества, о которых тот говорил (а он не мог их построить, поскольку подавляющее большинство их было бесконечным), теоремы теории множеств растворятся в воздухе. Нужно было вернуться на путь греческой математики, которая была конструктивной, а значит интуиционистской, при этом бесконечность присутствовала только в потенции, но никогда не была актуальной. Гаусс уже высказывал подобное мнение: «Я прежде всего протестую против применения бесконечной величины как завершенной, в математике это никак не допустимо.

Понятие бесконечности есть лишь способ выражения понятия предела». Для интуиционистов все трудности оснований математики исходили из использования бесконечности как чего-то законченного и идеального. Это нарушение происходит при попытке определить реальное число, такое, например, как число = 3, 141592... Это многоточие после первых знаков после запятой создает у нас ложное ощущение, будто перед нами закрытый объект.

В итоге речь зашла о восстановлении классической математики, насколько это возможно, без обращения к принципу исключенного третьего и к доведению до абсурда. В 1918 году Брауэр начал реализацию своего плана, который он назвал «вторым актом интуиционизма» («первый» акт предполагался как интуитивное основание математики), в статье «Основание теории множеств, независимо от принципа исключенного третьего». Держась за интуиционизм Канта, Брауэр основывался на временной перечислимости и признавал возможность только счетных множеств, считая несчетные множества противоречащими интуиции. Как говорил Кронекер, «Бог создал натуральные числа, все остальное создано человеком». С несчетными множествами работать нельзя, чтобы не столкнуться с серьезными парадоксами. В интуиционистской теории множеств сами множества получают имя видов, и единственные позволенные собрания чисел — конечные собрания: {0}, {0, 1}, {0, 1, 2}... Ни в коем случае не разрешено внезапно образовывать ансамбли из всех натуральных чисел {0, 1, 2,...}. Следовательно, алефы Кантора исчезают в тумане.

Бесконечность! Ни один другой вопрос так не вдохновлял человека, ни одна другая идея так не стимулировала его интеллект, ни одно другое понятие не требует большего разъяснения.

Давид Гильберт

Аренд Гейтинг, в свою очередь, вплотную подошел к арифметике. Интуиционистская арифметика включает в себя те же математические законы, что и классическая, но она подчиняется только логическим законам, которые удовлетворяют интуиционистов. В отличие от интуиционистской теории множеств, которая жертвовала значительной частью классической теории множеств, интуиционистская арифметика приготовила сюрприз: тесную связь с классической арифметикой. В 1933 году Курт Гёдель доказал, что для каждой формулы, доказуемой в арифметике Пеано, существует равносильная формула, которая доказуема в арифметике Рейтинга, и наоборот. Интуиционистская арифметика только внешне была слабее классической.

Поделиться с друзьями: