Естественно, такой способ восстановления подходит только для первого раздела диска, а для всех последующих нам потребуется определить стартовый сектор. Это определение должно быть очень точным, поскольку все структуры файловой системы адресуются от начала логического диска, и ошибка в один-единственный сектор сделает весь этот тонкий механизм полностью неработоспособным. К счастью, некоторые из структур ссылаются сами на себя, давая нам ключ к разгадке. В частности, файлы
$mft/$mftmirr
содержат номер своего первого кластера. Стоит нам найти первую запись
FILE*
, как мы узнаем, на каком именно секторе мы сейчас находимся (конечно, при условии, что сумеем определить количество секторов на кластер, но это
уже другая тема, которая более подробно будет обсуждаться далее в этой главе).
Проблема нулевой дорожки
Главная загрузочная запись жестко держит за собой первый сектор, и если он вдруг окажется разрушенным, работа с таким диском станет невозможной. Внешний вид типичного сектора MBR приведен в листинге 5.5. До недавнего времени проблема решалась посекторным копированием винчестера, переносом данных на здоровый жесткий диск с идентичной геометрией и последующим восстановлением MBR.
Сейчас ситуация изменилась. Современные винчестеры поддерживают возможность принудительного замещения плохих секторов из резервного фонда (а некоторые делают это автоматически), поэтому проблема нулевой дорожки, преследующая нас еще со времен гибких дисков и 8-разрядных машин, наконец-то перестала существовать.
Механизм замещения секторов все еще не стандартизирован. Он осуществляется утилитами, предоставляемыми производителем конкретной модели винчестера. Чаще всего они распространяются бесплатно и могут быть свободно найдены в сети.
В этом разделе я расскажу, как написать собственный менеджер мультизагрузки. Менеджер мультизагрузки представляет собой код, находящийся в загрузочном секторе, и по выбору пользователя загружающий любую из нескольких операционных систем, установленных на компьютере. В процессе обсуждения вы познакомитесь с прерыванием
INT 13h
, таблицей разделов и т.д. Стандартный загрузчик, устанавливаемый большинством операционных систем по умолчанию, слишком примитивен, чтобы его воспринимать всерьез, а нестандартные загрузчики от независимых разработчиков обычно слишком неповоротливы и ненадежны. Вот и давайте напишем свой! Пока мы будем его писать, мы познаем дао и дзен ассемблера, научимся отлаживать программы без отладчика и поближе познакомимся с низкоуровневыми интерфейсами винчестера.
Интерфейс INT 13h
Управлять дисками можно как через порты ввода/вывода, так и через BIOS. Порты намного более могущественны и интересны, однако BIOS программируется намного проще, к тому же она поддерживает большое количество разнокалиберных накопителей, абстрагируясь от конструктивных особенностей каждой конкретной модели. Поэтому будем действовать через нее, а точнее, через интерфейс прерывания
INT 13h
.
Попробуем прочитать сектор с диска в режиме CHS. Действовать нужно из самой MBR или из "голой" MS-DOS, иначе у нас ничего не получится, ведь Windows NT блокирует прямой доступ к диску даже из режима эмуляции MS-DOS.
Номер функции заносится в регистр
AH
. В случае чтения он равен двум. Регистр
AL
отвечает за количество обрабатываемых секторов. Так как мы собираемся читать по одному сектору за операцию, занесем сюда единицу. Регистр
DH
хранит номер головки, a
DL
— номер привода (
80h
— первый жесткий диск,
81h
— второй и т.д.). Пять младших битов регистра
CL
задают номер сектора, оставшиеся биты регистра
CL
и восемь битов регистра
CH
определяют номер цилиндра, который мы хотим прочитать. Регистровая пара
ES:BX
указывает на адрес буфера-приемника. Вот, собственно говоря, и все. После выполнения команды
INT 13h
считываемые данные окажутся в буфере, а если произойдет ошибка (например, головка "споткнется" о BAD-сектор), то BIOS установит флаг переноса (carry flag), и мы будем вынуждены либо повторить попытку, либо вывести грустное сообщение на экран.