Чтение онлайн

ЖАНРЫ

Возвращение времени. От античной космогонии к космологии будущего
Шрифт:

Абсолютного пространства нет, и невозможно спросить, что происходит в определенной точке, не указав, как отличить эту точку. Поэтому мы не можем локализовать объект, если не найдем способ указать место. Один из способов определить, где вы, – отметить уникальность видимого из этой точки. Допустим, некто утверждает, что два объекта в пространстве обладают точно такими же свойствами и расположены в точно таком же окружении. Значит, неважно, как далеко эти два объекта: вы обнаружите одинаковые конфигурации всего остального в космосе. Если бы такая странная ситуация имела место, то не было бы способа указать наблюдателю, как отличить один объект от другого.

Поэтому требовать, чтобы мир содержал два одинаковых объекта, – значит требовать невозможного. Тогда во Вселенной должны существовать два места, в которых вид Вселенной точно совпадает. Вселенная как целое в значительной степени определяется, казалось бы, простым требованием того, что она не должна содержать двух одинаковых объектов [171] .

Тот же довод

применим к событиям в пространстве-времени. Принцип тождества неразличимых требует: в пространстве-времени не может быть двух событий с абсолютно одинаковыми наблюдаемыми свойствами. Не может быть и двух идентичных моментов времени. Рассматривая ночное небо, мы видим Вселенную с определенного места в определенный момент. Вид этот включает в себя все фотоны, источники которых находятся на различном расстоянии от нас. Если физика реляционная наука, эти фотоны определяют внутреннюю реальность данного события – взгляда на ночное небо в конкретном месте в конкретное время. Принцип тождества неразличимых тогда гласит, что вид Вселенной, который наблюдатель может видеть в каждый момент в истории Вселенной, уникален. Предположим, пока вы спали, вас похитили пришельцы. Они забрали вас с собой на машине времени. В принципе, если бы вы проснулись и обнаружили, что находитесь в далекой галактике, вы смогли бы сказать, где именно вы во Вселенной, описав то, что видите вокруг. В дальнейшем вы сможете точно сказать, в какой момент в истории Вселенной вас транспортировали.

171

Как я указывал в главе 10, это запрещает Вселенной быть абсолютно симметричной.

Это значит, что наша Вселенная не может иметь точной симметрии (см. главу 10). Наличие симметрий полезно для анализа моделей малой части Вселенной, однако все симметрии, до сих пор предлагаемые физиками, оказались приблизительными или нарушенными.

В соответствии с принципом тождества неразличимых наша Вселенная уникальна: каждый момент и любое место в каждый момент однозначно отличаются от любого другого. В такой Вселенной не может быть условий, необходимых для реализации ньютоновой парадигмы. Этот метод, как отмечалось, требует, чтобы мы могли многократно повторить эксперимент, а также отличать эффект действия закона природы от эффектов, связанных с изменением начальных условий. Эта цель может быть достигнута лишь приблизительно: чем подробнее наблюдения, тем очевиднее, что ни одно событие или эксперимент не может быть точной копией другого. Мы будем называть лейбницианскими Вселенные, удовлетворяющие принципу тождества неразличимых.

С точки зрения Больцмана, наибольшая часть истории Вселенной состоит из периодов теплового равновесия, когда энтропия максимальна и Вселенная не имеет структуры или организации. Эти долгие мертвоподобные периоды перемежаются периодами сравнительно короткими, в которых структура и организация возникают из-за статистических флуктуаций и затем снова растворяются, что обусловлено тенденцией возрастания энтропии.

В какой Вселенной мы живем: Больцмана или Лейбница? В лейбницианской Вселенной время реально в том смысле, что нет двух идентичных моментов. Во Вселенной Больцмана моменты повторяются если не точно, то с любой заранее заданной степенью точности. В первом приближении все моменты во Вселенной Больцмана одинаковы, потому что в состоянии равновесия, грубо говоря, они неразличимы. Глобальные свойства, такие как температура и плотность, характеризующие средние значения микросостояний, в равновесной Вселенной однородны. Правда, атомы колеблются около этих средних значений, но этих колебаний почти никогда не бывает достаточно, чтобы проявиться на макроскопическом уровне в виде новой структуры и организации. Вселенная Больцмана, если ждать достаточно долго, повторится с любой заранее заданной точностью. В среднем промежутки между такими повторами определяются временем возвращения Пуанкаре. Но если время бесконечно, каждый миг повторяется бесконечное число раз.

Вселенная не может быть одновременно миром и Больцмана, и Лейбница. Если время реально, то не существует двух разных, но идентичных моментов. Время полностью реально лишь во Вселенной Лейбница. Она сложна и наполнена прекрасными уникальными структурами. Она постоянно изменяется, как бы гарантируя, что каждый момент со своими структурами уникален. Наша Вселенная именно такова.

Приятно сознавать, что наш мир удовлетворяет великим принципам вроде принципа тождества неразличимых, но это не раскрывает всех тайн, поскольку принципы не воздействуют на материю: это делают законы природы. И мы отчасти знаем ответ. Он связан с термодинамикой и гравитацией.

Один из элементов нашей лейбницианской Вселенной находится почти в тепловом равновесии. Это реликтовое или микроволновое фоновое излучение (МФИ). Но МФИ, как мы знаем, – это отпечаток ранней Вселенной, возникший около 400 тысяч лет после Большого взрыва. В состоянии равновесия находятся обширные области межзвездного и межгалактического пространства. Тем не менее, значительная часть Вселенной далека от равновесия. Самые распространенные объекты в ней – звезды, и они не находятся в равновесии со своим окружением. Звезда всегда в состоянии динамического равновесия между энергией, генерируемой в реакциях в звездном ядре (она стремится разорвать звезду), и гравитацией, которая стремится ее сжать. Звезда достигнет состояния, которое Больцман называет равновесным, тогда, когда ядерное топливо иссякнет

и она закончит свой путь как белый карлик, нейтронная звезда (тогда она может образовать систему) или черная дыра. Такие системы находятся не в равновесии, а в динамичном стационарном состоянии.

Звезда может быть охарактеризована как система, находящаяся далеко от равновесного состояния, за счет постоянного потока энергии, проходящего через нее. Источниками этой энергии являются ядерные реакции и гравитация. Энергия преобразуется в звездный свет в определенном диапазоне частот. Свет падает на планеты вроде нашей и выводит их из состояния равновесия.

Это пример общего принципа [172] : потоки энергии, проходящие через открытые системы, как правило, приводят их в состояние с более высоким уровнем организации. (Открытые – это ограниченные системы, которые могут обмениваться энергией со своим окружением.) Мы можем назвать этот принцип принудительной самоорганизацией. Если принципы достаточного основания и тождества неразличимых имеют первостепенную важность, то принцип принудительной самоорганизация трудится в мириадах звезд и галактик и обеспечивает разнообразие во Вселенной.

172

Более подробно о самоорганизации см. книги Бака, Кауфмана и Моровица. Одна из версий принципа принудительной самоорганизации – это теорема о циклах, описанная в книге Моровица, а другая – явление самоорганизующейся критичности, описанное в книге Бака.

Налейте в кастрюлю воды и поставьте на плиту. Система (кастрюля и вода) является открытой, поскольку к ней подводится энергия. Она нагревает воду и уходит через воду в воздух. Чтобы упростить систему, накроем кастрюлю крышкой, чтобы вода не уходила даже в виде пара. Через некоторое время вода придет к стационарному состоянию, в котором ни ее температура, ни плотность не распределены равномерно. Температура воды будет высокой внизу и уменьшаться по направлению к поверхности (плотность изменяется в обратном порядке). Энергия вывела воду из равновесия. Вскоре образуется структура: циклы конвекции, в которых вода движется упорядоченным образом. Эти циклы возникают благодаря теплу. Вода, нагреваясь, расширяется и движется вверх в виде столба. На поверхности она отдает часть тепла, становится плотнее окружающей среды и опускается, создавая столб. Поскольку вода не может подниматься и опускаться по одной и той же траектории, складывается структура в виде колонны в объеме кипящей воды.

Постоянный поток энергии, идущий через систему, может привести к образованию сложных структур, и такая система далека от термодинамического равновесия. Другой пример – песчаные волны на дюнах. На другом конце спектра сложности – жизнь. Оба примера, как и множество явлений между ними, – результат последовательного воздействия потока энергии. Это, кроме прочего, означает, что сложные самоорганизующиеся системы не бывают замкнутыми.

Потоки энергии образуют системы типа Вселенной Лейбница. Живая материя, как правило, представлена множеством копий, но каждая копия отличается от остальных. И чем выше вы поднимаетесь по лестнице сложности, тем сильнее различаются копии. Второе начало термодинамики применимо лишь к замкнутым системам, не обменивающимся материей и энергией с миром. Но ни одна живая система не является замкнутой. Мы живем за счет потоков вещества и энергии, генерируемых, в конечном счете, Солнцем. Если нас поместить в ящик (прообраз погребения!), мы погибнем.

Аристотель, полагавший, что подлунный мир сохраняется вне равновесия за счет проходящей сквозь него энергии, был прав. Непонимание этого привело некоторых ученых и философов к конфликту между вторым началом термодинамики и тем фактом, что естественный отбор производит все менее вероятные структуры. Здесь нет противоречия: закон возрастания энтропии неприменим к незамкнутой биосфере. Естественный отбор – это механизм спонтанной самоорганизации.

Очень сложные системы не могут быть равновесными, потому что порядок не случаен. Высокая энтропия и сложность системы несовместимы. Но сложность еще не означает, что система обладает низкой энтропией. Группа атомов, выстроенная по прямой, обладает низкой энтропией, но эта система вряд ли сложна. Джулиан Барбур и я определили сложность через неоднородность. Система отличается высокой неоднородностью, если можно отличить каждую из ее подсистем, имея минимальный объем сведений об их связи или соотношении с системой [173] . Город характеризуется высокой неоднородностью, потому что, взглянув вокруг, легко понять, где мы. Такие условия возникают в результате самоорганизации в природе в системах, далеких от равновесия.

173

Barbour, Julian, and Lee Smolin Variety, Complexity and Cosmology // hep-th/9203041.

Общей особенностью самоорганизующихся систем является стабилизация с помощью механизмов обратной связи. Любое существо представляет собой сложную сеть процессов обратной связи, которые регулируют, каналируют и стабилизируют проходящие через него потоки энергии и материи. Обратная связь может быть положительной. Это означает, что она ускоряет производство чего-либо (вспомните визг микрофона, если его поднести к динамику). Отрицательная обратная связь приглушает сигнал (как термостат, который включает печь, когда дома холодно, и выключает ее, когда становится жарко).

Поделиться с друзьями: