Чтение онлайн

ЖАНРЫ

Возвращение времени. От античной космогонии к космологии будущего
Шрифт:

В равновесии нет стрелы времени. Здесь порядок можно увеличить лишь временно, посредством случайной флуктуации. Эти отклонения от равновесия выглядят в среднем одинаково вне зависимости от времени. Если вы сняли фильм о движении атомов в газе в состоянии равновесия и прокрутили его наоборот, вы не сможете указать оригинальную версию. Но наша Вселенная совсем не такая.

Стрела времени требует объяснения, потому что фундаментальные законы физики симметричны относительно времени. Любое решение уравнений для этих законов имеет парное решение, со временем, развернутым в обратном направлении (правда, левое здесь заменено на правое, а частицы – на античастицы). Таким образом, фундаментальные законы не будут нарушены, если некоторые люди проживут свой век в обратном направлении, или кофе, оставленный на столе, вдруг нагреется, или соберется разбитая чашка.

Но почему этого не случится? И почему разные асимметрии времени направлены в сторону увеличения беспорядка? Иногда эта проблема называется проблемой стрелы времени. Во Вселенной их несколько.

Вселенная расширяется, а не сжимается. Это космологическая стрела времени. Малые части Вселенной, предоставленные сами себе, имеют тенденцию разупорядочиваться (пролитое молоко, равновесный газ и так далее). Это термодинамическая стрела времени. Люди, животные

и растения рождаются, растут, умирают. Это биологическая стрела времени. Мы ощущаем время, текущее из прошлого в будущее. Мы помним прошлое, но не будущее. Это эмпирическая стрела времени. Менее очевидная, но не менее важная стрела времени – электромагнитная. Свет движется из прошлого в будущее. Следовательно, свет, который достигает наших глаз, дает нам представление о прошлом мира, а не о его будущем. Световые волны возникают при движении электрических зарядов. Стоит пошевелить электрический заряд, и начнет распространяться свет, причем всегда в направлении будущего. Это, вероятно, применимо и к гравитационным волнам. Поэтому существует гравитационная стрела времени.

В нашей Вселенной, по-видимому, множество черных дыр. Черная дыра сильно асимметрична во времени. Любое тело может быть поглощено ею, но выходит из нее лишь тепловое излучение Хокинга. Черная дыра превращает все в равновесный газ фотонов. Этот необратимый процесс производит много энтропии.

А белые дыры? Эти гипотетические объекты возникают в решениях уравнений ОТО. Они получаются при изменении направления времени в решении для черных дыр. Белые дыры ведут себя противоположным черным дырам образом. Ничто не может упасть в белую дыру, но выйти из нее может все. Белая дыра может выглядеть как самопроизвольное появление звезды. Вы получите белую дыру, если снимете фильм про коллапс звезды в черную дыру и запустите его наоборот. Астрономы пока не наблюдали ничего, что можно было бы счесть белой дырой.

Даже если вы принимаете во внимание лишь черные дыры, наша Вселенная кажется странной. Согласно уравнениям ОТО, она вполне могла быть изначально заполнена черными дырами. Но, возможно (см. главу 11), в ранней Вселенной вообще не было черных дыр. Все черные дыры, которые мы знаем, образовались вскоре после Большого взрыва в результате коллапса массивных звезд.

Почему есть лишь черные дыры, но не белые? И почему в ранней Вселенной черные дыры отсутствовали? Возможно, стрела времени указывает на отсутствие черных дыр в ранней истории Вселенной.

Может быть, в галактике на другой стороне Вселенной некоторые из стрел времени смотрят в обратную нашей сторону? Этому нет свидетельств. Мы могли бы жить в мире, в котором некоторые стрелы времени меняют направление в зависимости от места, но, очевидно, здесь этого не происходит. Почему?

Стрелы времени являются такими свойствами нашей Вселенной, которые требуют объяснения. Любое объяснение опирается на допущения о природе времени. Объяснение, предложенное теми, кто полагает, что время возникает из вневременного мира, будет отличаться от основанного на гипотезе о том, что время фундаментально и реально. С этим связан вопрос, обратимы ли во времени законы физики. В главе 5 отмечалось: тот факт, что законы природы обратимы во времени, может быть принят в качестве доказательства того, что время не является основополагающим понятием. Как объяснить стрелы времени, если законы обратимы во времени? Как стрелы времени, каждая из которых представляет асимметрию во времени, могли возникнуть из симметричных относительно времени законов?

Ответ в существовании начальных условий. Законы могут быть симметричны относительно направления времени, но начальные условия не должны быть таковыми. Начальные условия могут эволюционировать в конечные, которые легко отличить. Фактически это и произошло: начальные условия нашей Вселенной, вероятно, были точно настроены на создание такой Вселенной, которая является асимметричной во времени.

Начальная скорость расширения Вселенной, которая определяется начальными условиями, возможно, была оптимизирована для эффективного производства галактик и звезд. Если бы расширение шло гораздо быстрее, плотность Вселенной быстро снижалась бы, не позволяя звездам и галактикам формироваться. Если бы расширение шло гораздо медленнее, Вселенная могла схлопнуться в сингулярность задолго до того, как сформируются галактики и звезды. Скорость расширения была идеальной для образования множества звезд. Именно они миллиарды лет излучают горячие фотоны в холодный космос и удерживают Вселенную от равновесия. Так объясняется термодинамическая стрела времени.

Электромагнитная стрела времени также может быть объяснена симметричными во времени начальными условиями [164] . В ранней Вселенной не было электромагнитных волн. Свет появился позднее, после возникновения материи. Это объясняет то, почему световые изображения несут информацию о материи. Если бы мы жили просто по законам электромагнетизма, все могло быть иначе. Уравнения электромагнетизма допускают существование Вселенной, в которой свет распространяется свободно. То есть свет мог сформироваться непосредственно в момент Большого взрыва, а не позднее. В такой Вселенной, как наша, любые изображения и информация о материи, переносимые светом, были бы задавлены светом, исходящим непосредственно от Большого взрыва. Мы не увидели бы ни звезд, ни галактик. Мы могли бы увидеть просто беспорядок. Свет, образованный в результате Большого взрыва, мог переносить изображения событий, которые никогда не происходили, например образы сада со слонами, жующими гигантскую спаржу.

164

Стивен Вайнштейн из Университета Ватерлоо убедил меня в важности электромагнитной стрелы времени. Его работа Electromagnetism and Time-Asymmetry (arXiv:1004.1346v2) оказала сильное влияние на содержание следующего раздела.

Так Вселенная могла бы выглядеть, если бы мы сняли кинофильм о ней в далеком будущем и прокрутили его наоборот. В далеком будущем будет распространяться много световых изображений – образы вещей, которые существовали. Но если мы прокручиваем фильм назад, мы видим, что Вселенная наполнена образами событий, которые еще не происходили. Действительно, световое изображение будет “втекать” в событие, представленное этим изображением, и заканчиваться в нем. Свет, который мы увидели бы, рассказал бы нам лишь о тех событиях, которых не было. Мы не живем в такой Вселенной, но могли бы, если возможные Вселенные соответствуют решениям уравнений физики. Чтобы объяснить, почему мы видим лишь то, что происходит или произошло, и никогда не видим того, что еще не случилось и не случится, мы должны ввести жесткие начальные условия. Они запрещают свободное распространение любых световых изображений в ранней Вселенной. Это сильно асимметричное условие необходимо для объяснения электромагнитной стрелы времени.

Похожие начальные условия требуются для стрел времени, соответствующих

гравитационным волнам и черным дырам. Если фундаментальные законы симметричны относительно хода времени, нагрузка в ответе на вопрос, почему наша Вселенная асимметрична во времени, ложится на выбор начальных условий. Так что придется наложить условие отсутствия в ранней Вселенной свободно распространяющихся гравитационных волн, черных и белых дыр.

Об этом писал Роджер Пенроуз. Для объяснения он предложил гипотезу кривизны Вейля [165] . Кривизна Вейля – это математическая величина, которая принимает ненулевое значение в присутствии гравитационного излучения, белых или черных дыр. Принцип Пенроуза заключается в том, что в начальной сингулярности эта величина была равна нулю. Это, указывает Пенроуз, согласуется с тем, что мы знаем о рождении Вселенной. Это асимметричное относительно времени условие, поскольку оно, конечно, не выполняется в более поздней Вселенной: там множество гравитационных волн и черных дыр. Следовательно, утверждает Пенроуз, чтобы описать наблюдаемую Вселенную, это асимметричное условие должно быть наложено на выбор (время-симметричного) решения уравнений ОТО. То, что для описания нашей Вселенной требуются асимметричные начальные условия, ослабляет довод в пользу нереальности времени из-за симметричных относительно времени законов. Нельзя игнорировать роль начальных условий и заявлять, что прошлое похоже на будущее. Чтобы хотя бы грубо описать Вселенную, начальные условия должны быть очень не похожими на нынешние [166] .

165

Penrose, Roger Singularities and Time-Asymmetry / In: Hawking, S. W., and W. Israel, eds. General Relativity: An Einstein Centenary Survey. Cambridge, UK: Cambridge University Press, 1979. Pp. 581–638.

166

Многие физики и философы задавались вопросом, действительно ли существует несколько стрел времени. Возможно, одна или несколько стрел времени могут быть объяснены другими? Космологическая стрела времени, вероятно, к ним не относится. Легко представить, что Вселенная расширяется настолько быстро, что никакие гравитационно-связанные структуры не успевают сформироваться. Такая Вселенная останется в равновесии, и в ней не будет термодинамической стрелы времени. Следовательно, тот факт, что Вселенная расширяется, сам по себе недостаточен для объяснения термодинамической стрелы времени. Можно также представить, что Вселенная расширяется до своего максимального размера, а затем сжимается. Насколько мы знаем, наша Вселенная сейчас не такая, но есть решения уравнений ОТО, которые ведут себя таким же образом. Это был бы мир, где космологическая стрела времени разворачивается вспять на полпути. Развернется ли вспять в таком случае термодинамическая стрела времени? Соберется ли в чашку разлитое молоко, восстановится ли разбитая чашка? Писатели-фантасты любят такие сюжеты, однако, это неправдоподобно. Биологическая стрела времени может быть следствием термодинамической. Мы стареем, потому что в клетках накапливается разупорядоченность. Предпринимаются также попытки объяснить по крайней мере некоторые из эмпирических стрел времени с помощью термодинамической стрелы времени. Мы помним прошлое, но не будущее, потому что память – это форма организации, а организация со временем уменьшается. В конце концов, может, термодинамическая стрела времени сводится к выбору начальных условий? Это предположил Пенроуз. Он утверждал, что его гипотеза кривизны Вейля могла бы объяснить существование термодинамической стрелы времени, потому что ранняя Вселенная без черных или белых дыр обладала значительно меньшей энтропией, чем могла бы, если бы случайным образом была заполнена черными и белыми дырами. Пенроуз опирается на идею о том, что черные дыры обладают энтропией. Это удивительный факт, обнаруженный Джекобом Бекенстейном в 1972 году и подробно изученный Стивеном Хокингом. Черные дыры обладают огромной энтропией, поскольку в высшей степени необратимое действие, которое вы можете совершить – это отправить что-то в черную дыру. Учитывая огромное количество энтропии, которое может существовать во всех черных дырах в ранней Вселенной, реальная Вселенная без каких-либо начальных черных дыр образовалась в состоянии почти минимальной энтропии. Гипотеза Пенроуза будет успешно работать в случае, если Вселенная расширяется достаточно медленно и равномерно, что необходимо для формирования гравитационно-связанных структур. С этой точки зрения, высокоорганизованная Вселенная весьма маловероятна, поскольку большинство начальных условий приведет к Вселенной, которая образуется и остается в состоянии равновесия. Она с самого начала была бы наполнена светом и гравитационными волнами, переносящими образы прошлого или будущего. Черные и белые дыры будут доминировать с самого начала. В мире, управляемом время-симметричными законами, объяснение, почему мы живем в сложной Вселенной, основано на крайне маловероятном выборе время-асимметричных начальных условий.

Упор делается на начальные условия. Но у нас нет рационального объяснения, как они были выбраны, так что мы зашли в тупик и оставили важнейший вопрос о нашей Вселенной без ответа.

Есть и другой, гораздо более простой вариант. Мы считаем, что наши законы являются аппроксимацией некоторого фундаментального закона. Что если этот закон асимметричен относительно стрелы времени?

Если основной закон асимметричен, такими же будут и большинство его следствий [167] . Не будет составлять проблему объяснение того, почему мы не наблюдаем несуразности при протекании природных процессов обратно во времени. Действительно, обратимые во времени решения уравнений не будут следовать из этого закона. И тогда тайна, почему мы видим изображения прошлого, но не будущего, будет раскрыта. То, что Вселенная сильно асимметрична во времени, будет объясняться асимметрией во времени основного закона. Время-асимметричная Вселенная не будет представляться маловероятной. Она станет необходимостью.

167

Из основополагающего время-асимметричного закона должны следовать время-симметричные законы приблизительной эффективной теории, применимые в низкоэнергетических пределах и для случаев малой кривизны пространства-времени. Таким образом, временная асимметрия могла быть сильно выраженной на самых ранних этапах формирования Вселенной, что могло бы объяснить потребность в высоко время-асимметричных начальных космологических условиях.

Это, насколько я понимаю, имел в виду Пенроуз. Различие между физикой в районе начальной сингулярности и физикой более поздней Вселенной вытекает из квантовой теории гравитации, которая в представлении Пенроуза должна быть сильно время-асимметричной теорией. Но во время-асимметричной теории неестественно представить время возникающим. Если фундаментальная теория не содержит понятия времени, нет возможности отличить прошлое от будущего. В таком случае невероятность нашей Вселенной по-прежнему требует объяснений.

Поделиться с друзьями: