Чтение онлайн

ЖАНРЫ

Выход из кризиса. Новая парадигма управления людьми, системами и процессами
Шрифт:

Ошибки и их исправление в сервисных организациях. Изложенная выше теория применима к работе банка, универмага, любой компании, допускающей ошибки в платежных ведомостях, и к большинству других ситуаций (см. пример 3). Поток работы переходит с этапа на этап, конечный пункт – счет потребителя, или цифры на чеке, или отчет. Работа может пройти через несколько этапов, прежде чем ошибка будет обнаружена. К этому моменту стоимость исправления может стать в 20, 50 или 100 раз больше стоимости ее обнаружения и исправления в месте возникновения. В рассмотренном ниже примере 3, представленном мистером У. Лацко из Irving Trust Company, k2 в 2000 раз больше k1.

Разрушающие испытания.

Предшествующая теория основана на испытаниях без разрушения опытного образца. Некоторые испытания связаны с разрушением, они разрушают контролируемую выборку. Пример – долговечность лампочки, число тепловых калорий при сгорании кубического фута газа, или время работы плавкого предохранителя, или проверка содержания шерсти в куске ткани. Отбраковка всей партии не имела бы смысла, поскольку передавать в производство было бы нечего.

Очевидно, что для разрушающих испытаний единственное решение – достижение состояния статистической управляемости в производстве деталей, чтобы сразу делать их правильно. Это решение – наилучшее как для разрушающих, так и для неразрушающих испытаний.

Примеры применения правила «все или ничего»

Пример 1. Производитель телевизоров проводил контроль каждой входящей микросхемы.

Вопрос: Сколько дефектных микросхем вы обнаруживаете?

Ответ: Очень мало. (Он взглянул на цифры за последние несколько недель.) В среднем одна или две дефектные микросхемы на десять тысяч испытанных.

Таким образом, мы имеем

Дальнейшие вопросы позволили получить информацию о том, что стоимость первоначального контроля k1 равна 30 центам и что каждая плата с микросхемами проверяется по ходу процесса после того, как к ней добавляется значительное количество ценности. В этой точке замена дефектной микросхемы причиняет ущерб

k2 = 100k1.

Таким образом,

В соответствии с этим не следовало проводить контроль микросхем. Производство удовлетворяет условию 1, но производитель действует в соответствии с процедурой условия 2. Другими словами, он максимизирует свои полные затраты. При его плане средние полные затраты на одну интегральную схему составят

k1 + kp,

тогда как при отсутствии контроля поступающих микросхем средние затраты равнялись бы

p (k2 + k).

Разница составляет

Потери = {k1 + kp} – {p (k2 + k)} = k1pk2 = 29,6 цента

на каждую микросхему. В телевизоре от 60 до 80 микросхем. При 60 микросхемах потери из-за неправильного выбора плана составили бы 60 x 29,6 цента = 1776 центов, почти 10 % себестоимости – это пример потерь, встроенных в продукцию.

Отвечающий за качество инженер сначала объяснил мне, что ему не нужен статистический контроль качества, поскольку проверке подвергается 100 % продукции. По его словам, он применяет 100 %-ный контроль микросхем, потому что его поставщик не имеет оборудования для проведения испытаний при требуемых условиях. Тем не менее изготовитель микросхем, как мне кажется, отлично справляется со своей работой, которая столь хороша, что p = 0,00015.

Как это часто случается при отсутствии теории, этот человек максимизировал свои затраты.

Он всего лишь делал все, что мог. Вычисления, приведенные выше, стали поворотной точкой в его карьере.

Между прочим, на телевизионном мониторе перед каждой группой производственных рабочих размещалась информация о числе дефектов каждого типа, произведенных группой накануне. Эта информация была не только абсолютно бесполезной, но и деморализующей и контрпродуктивной. Она никому не помогала делать работу лучше.

Пример 2. Производитель автомобилей испытывает двигатели до того, как они устанавливаются на шасси. Назовем этот момент точкой А. Позднее двигатель становится частью силовой установки, готовой привести автомобиль в движение. Назовем этот момент точкой Б. Стоимость испытаний в точке А равна k1 = 20 долл. Стоимость ремонта двигателя, не выдержавшего это испытание, равна k = 40 долл. Стоимость ремонта двигателя, отказавшего в точке Б, составляет 1000 долл. Разделим эту стоимость на две части: k2 = 960 долл. и k1 = 40 долл. В точке Б отказывает один из 1000 двигателей, прошедших все испытания в точке А. Вопрос состоит в том, нужно ли проводить испытания в точке А. Чтобы ответить на данный вопрос, рассмотрим таблицу затрат.

Таблица 1

Точка равновесного качества соответствует значению

Таким образом, если 2 % двигателей будут отказывать в точке А, разумно продолжать 100 %-ный контроль в этой точке и попытаться повысить качество до такого уровня, когда контроль из соображения сокращения полных затрат следовало бы прекратить.

Если бы k2 равнялось 500 долл., точка равновесного качества соответствовала бы значению p = 20/500 = 1/25. Таким образом, если бы p равнялось (например) 1 к 50, разница между 100 %-ным контролем в точке А и отсутствием контроля была бы равна k1 – pk2 = 20 долл. – (1/50) 500 долл. = 10 долл. Очевидно, что в таких условиях разумно прекратить испытания в точке А.

Пример 3. (Предложен Уильямом Лацко, в то время сотрудником Irving Trust Company, Нью-Йорк.) Поток работы переходит из отдела в отдел банка, универмага или бухгалтерии. Стоимость проверки одной операции, выполняемой в конкретном отделе, равна 25 центам, а средняя стоимость исправления допущенной здесь ошибки на последующих стадиях процесса равна 500 долл. = 50 000 центов. Одна ошибка на 1000 транзакций – это почти предел точности для рассматриваемого типа работы, поэтому мы примем

p >= 1/1000, k1/k2 = 25/50 000 = 1/2000.

Поскольку p > k1/k2, это условие 2, тогда план минимизации средних полных затрат – это 100 %-ная проверка на выходе.

Обнаружение ошибок в операциях в сфере услуг, возможно, даже более трудная задача, чем на производстве. Проверяющий может обнаружить только половину совершенных ошибок или в лучшем случае две из трех. Очевидно, что важно совершенствовать систему, в частности, за счет повышения разборчивости цифровых данных, реконструкции освещения, изменения принципов найма, размещения, подготовки и также, что важно, помощи руководству в использовании статистических методов.

Поделиться с друзьями: