Земля и космос. От реальности к гипотезе
Шрифт:
Но если все это так, то кажется лишенным здравого смысла говорить о «массе покоя» в связи с протонами, поскольку это подразумевает, что протон имеет в покое массу, а протон никогда не может быть в покое.
Альтернативный термин был предложен О. М. Биланюком и И. К. Г. Сударшаном. Этот термин — «собственная масса». Собственная масса объекта — это постоянное значение массы, которая неотъемлемо свойственна телу и не зависит от скорости. В случае с обыкновенными телами эта свойственная телу масса равна той, которая может быть измерена у данного тела в состоянии покоя. Но в случае с протоном таких прямых измерений сделать невозможно, и потому приходится определять его массу путем размышлений.
Протон
Одна из них — гипотетический гравитон — источник силы гравитации. Существование гравитона, похоже, в 1969 году было подтверждено окончательно.
Другие четыре частицы — это различные нейтрино: 1) само нейтрино, 2) антинейтрино, 3) мюон-нейтрино и 4) мюон-антинейтрино.
Гравитон и все нейтрино могут и должны передвигаться со скоростью света. О. М. Биланюком и И. К. Г. Сударшаном было высказано предложение, что все частицы, двигающиеся со скоростью света, должны быть объединены вместе в группу «люксонов» (от греческого слова, обозначающего «свет»).
Все частицы с собственной массой больше нуля, которые, таким образом, не могут достичь скорости света и потому должны всегда двигаться с меньшими скоростями, собраны вместе в класс «тардионов». Позднее появилось выражение «subluminal», «досветовые», для обозначения скоростей тардионов.
Но представим себе то, что невозможно представить, и рассмотрим частицы, которые могут двигаться со сверхсветовыми скоростями. Впервые в строгом соответствии с релятивистскими принципами (не как простое рассуждение в стиле научной фантастики) это предположение было рассмотрено Биланюком, Сударшаном и Дешпанде в 1962 году — и их работы оставались в центре внимания до того, как Жирар Файнберг в 1967 году опубликовал похожие рассуждения (именно работа Файнберга вызвала дискуссию в «Тайм»).
Предположим, что частица движется со скоростью 2 с, то есть вдвое большей скорости света. В этом случае v/ cстанет 2 с/ с, или 2, а ( v/ c) 2будет 4. Выражение
Поскольку
1,73 mi = m 0(уравнение 5).
Выражение, которое содержит i(то есть
Легко видеть из взятых наугад примеров, что для любого предмета, двигающегося при сверхсветовых скоростях, собственной массой является воображаемая величина.
Воображаемая масса не имеет никакого физического значения в нашей «досветовой» вселенной, и потому долгое время было принято сразу просто отмахиваться от сверхсветовых скоростей, поскольку не может быть воображаемой массы. Я сам это говорил в свое время.
Но на самом ли деле воображаемая масса не имеет никакого значения? Или, может, произведение mi— это просто математическое выражение некоторого набора правил, к которому мы еще не привыкли, — но правил, которые все же подчиняются диктату специальной теории относительности Эйнштейна?
К примеру, мы знаем, что в баскетболе, американском футболе, футболе, хоккее и так далее победителем считается тот — или та команда, — кто имеет больше очков. Но разве это значит, что нет игр, где победитель имеет меньше очков? К примеру, гольф? Главное в любой игре — мастерство; выигрывает тот, кто справляется с более трудными задачами; если о мастерстве, как правило, говорит больший счет, то в гольфе — меньший.
Для того чтобы соблюдались правила специальной теории относительности, любой объект с «воображаемой» массой покоя должен вести себя таким образом, который кажется парадоксальным тем, кто привык иметь дело с объектами с реальной массой покоя.
В этом случае если какой-нибудь объект с воображаемой массой покоя увеличивает свою энергию, его скорость уменьшается, если уменьшает энергию, то его масса увеличивается. Другими словами, любой объект с воображаемой массой покоя замедляется, когда к нему прикладывается сила, и ускоряется, когда встречает сопротивление.
Более того, когда такие частицы получают энергию и замедляются, они никогда не могут замедлиться до скорости света. Близ скорости света их скорость становится бесконечной. Однако когда их энергия уменьшается до нуля, их скорость возрастает беспредельно. Любое тело с воображаемой массой покоя, которое имеет нулевую энергию, будет иметь неограниченную скорость. Такие частицы всегда движутся быстрее света, и Файнберг предложил называть их «тахионами» (от греческого слова, означающего «быстрый»).
Хорошо, тогда вселенная из тардионов состоит из частиц, движущихся со скоростями, меньшими скорости света. Вселенная из тахионов состоит из частиц, что движутся быстрее скорости света — от сдля бесконечной энергии до для нулевой энергии. Между этими двумя вселенными находится люксонная вселенная, со скоростями с— не больше и не меньше при любой энергии.
Мы видим, что вся Вселенная как бы разделена на два отделения непроницаемой стеной. С одной стороны — тардионная вселенная, с другой — тахионная, а между ними бесконечно тонкая, но очень жесткая люксонная стена.
В тардионной вселенной большинство объектов имеют малую кинетическую энергию. Те объекты, которые имеют большие скорости (такие, как космические частицы), обладают очень малой массой. Объекты с большими массами (такие, как у звезды) имеют очень маленькую скорость.
То же самое, похоже, справедливо и по отношению к тахионной вселенной. Объекты с относительно малыми скоростями (всего немного большими скорости света) и, таким образом, обладающие большими энергиями, должны иметь малую массу и не очень отличаться от частиц космических лучей. Объекты с большими массами имеют малую кинетическую энергию и, таким образом, очень большие скорости. Звезда из тахионов, к примеру, должна передвигаться со скоростями, в триллионы раз превышающими скорость света. Но это означает, что масса звезды будет распределена по большим пространствам на протяжении очень малого времени, так что очень малая ее часть будет представлена в любом месте в данный промежуток времени.