Чтение онлайн

ЖАНРЫ

Живи долго! Научный подход к долгой молодости и здоровью
Шрифт:

Полный разгром

О том, что такое свободные радикалы и как они образуются, какова квантовая биология окислительного фосфорилирования, я постарался максимально просто объяснить в главе «Как не умереть от болезней головного мозга» книги «Не сдохни!». Достаточно сказать, что свободные радикалы, как правило, представляют собой нестабильные, бурно реагирующие молекулы с непарным электроном.

Электроны, крошечные строительные блоки материи, любят путешествовать парами. Свободные радикалы пытаются объединить свои непарные электроны в пары, отбирая их у любой молекулы на своем пути [1469] . Это может иметь различные последствия в зависимости от того, какая молекула подвергается нападению. При атаке на жиры могут быть нарушены клеточные мембраны [1470] . При атаке на ферменты они могут быть инактивированы [1471] . Когда повреждаются другие белки, они могут распутаться и создать новые структуры, которые наша собственная иммунная система воспримет как чужеродные, что приведет к аутоиммунному воспалению [1472] . А когда свободные радикалы отрывают электроны от ДНК, наши гены могут мутировать, и нити ДНК буквально разрываются [1473] . К счастью, в организме имеется целый ряд антиоксидантов, способных без вреда для здоровья отдать свободные электроны и тем самым обезвредить свободные радикалы.

1469

Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/

1470

Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266. https://pubmed.ncbi.nlm.nih.gov/33477669/

1471

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1472

Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. https://pubmed.ncbi.nlm.nih.gov/20471444/

1473

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

Дисбаланс

между избытком свободных радикалов и недостаточной антиоксидантной защитой называется окислительным стрессом. Согласно этой теории, поврежденные клетки, по сути, являются причиной старения. Таким образом, старение и болезни рассматриваются как окисление нашего организма. Помните эти коричневые старческие пятна на тыльной стороне рук? Это окисленные жиры и белки под кожей. Считается, что именно из-за окислительного стресса появляются морщины [1474] , из-за него мы становимся более забывчивыми [1475] , из-за него с возрастом разрушаются системы наших органов. В общем, согласно этой теории, мы ржавеем [1476] . (Ржавчина – это окисление металла.) А значит, нужно употреблять в пищу большее количество антиоксидантов. Но работает ли это на самом деле? Несмотря на 20 000 опубликованных обзоров более чем четверти миллиона работ, посвященных антиоксидантам [1477] , этоостается спорной темой [1478] . Прежде всего, давайте разберемся, верна ли вообще теория связи окисления и старения.

1474

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/

1475

Logan S, Royce GH, Owen D, et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience. 2019;41(5):591–607. https://pubmed.ncbi.nlm.nih.gov/31641924/

1476

Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83. https://pubmed.ncbi.nlm.nih.gov/11795897/

1477

Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019;2019:8278454. https://pubmed.ncbi.nlm.nih.gov/30728893/

1478

Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/

Единственная теория, объясняющая разброс

Существует более 300 теорий старения [1479] . Хотя ни одна из них не получила всеобщего признания [1480] , сам факт существования митохондриальной теории на протяжении почти полувека придает ей определенный вес [1481] . Первые попытки ее обоснования появились на несколько десятилетий раньше, чем предположение Штадтмана в 1970-х годах, – именно тогда ученые заметили параллель между многими проявлениями старения и разрушающим ДНК действием радиационного облучения [1482] . Это привело к возникновению в 1956 году свободнорадикальной теории старения, согласно которой старение связано с накоплением окислительных повреждений тканей [1483] . Затем после выяснения того, что основным источником образования свободных радикалов в клетках являются митохондрии, ее трансформировали в митохондриальную теорию [1484] .

1479

Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/

1480

Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87. https://pubmed.ncbi.nlm.nih.gov/18044188/

1481

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1482

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1483

Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://pubmed.ncbi.nlm.nih.gov/13332224/

1484

Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care. 2002;5(1):5–10. https://pubmed.ncbi.nlm.nih.gov/11790942/

Любая успешная теория старения должна разгадать фундаментальную загадку: почему максимальная продолжительность жизни животных так сильно различается? Среди млекопитающих существует двухсоткратная разница. Некоторые землеройки живут всего год, в то время как гренландские киты доживают до 200 лет и более [1485] – и это только второе по продолжительности жизни животное [1486] . Океанский моллюск квахог, обитающий в Северной Атлантике, может прожить более 500 лет [1487] . Это в тысячи раз больше, чем продолжительность жизни некоторых других беспозвоночных, которая может составлять всего несколько дней. Только одна теория старения может объяснить такой разброс параметров: митохондриальная теория [1488] .

1485

Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112–22. https://pubmed.ncbi.nlm.nih.gov/25565328/

1486

.

1487

Butler PG, Wanamaker AD Jr, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013;373:141–51. https://www.sciencedirect.com/science/article/abs/pii/S0031018212000302?via%3Dihub

1488

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

Согласно этой теории, чем ниже скорость образования свободных радикалов в митохондриях, тем дольше живут животные. Это не зависит от скорости метаболизма. Например, у летучих мышей и птиц высокий метаболизм, и при этом они живут относительно долго. Просто митохондрии долгоживущих видов более эффективны. Они часто пропускают меньше электронов, что коррелирует с меньшим окислительным повреждением митохондриальной ДНК [1489] . (Митохондрии имеют свои собственные крошечные петли ДНК, которые, как считается, кодируют всего 13 белков [1490] и отделены от основной массы ДНК, кодирующей более 20 000 генов в клеточном ядре [1491] .) К счастью, эффективность митохондрий не является какой-то неизменной характеристикой. Мы можем снизить уровень образования свободных радикалов в митохондриях с помощью физических упражнений [1492] и одного изменения в рационе питания – снижения потребления аминокислоты метионина [1493] .

1489

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1490

Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/

1491

Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/

1492

Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/

1493

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

Как

снизить потребление метионина

Содержание метионина в тканях обратно пропорционально продолжительности жизни млекопитающих. Чем ниже содержание метионина, тем продолжительнее жизнь. Это наблюдение хорошо встраивается в митохондриальную теорию, поскольку метионин является наиболее чувствительным к окислению компонентом белка [1494] . Однако высокий уровень метионина не только делает организм уязвимым к окислительному стрессу, но и активно его вызывает. Даже в пробирке, когда метионин капают на изолированные митохондрии, они начинают генерировать больше свободных радикалов [1495] . Чтобы выяснить, можно ли с помощью диеты уменьшить их количество, исследователи провели эксперимент.

1494

Ruiz MC, Ayala V, Portero-Otin M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/

1495

Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/

У грызунов ограничение рациона питания на 40 % снижает скорость образования свободных радикалов в митохондриях и увеличивает продолжительность их жизни. Было установлено, что в основе этого лежит уменьшение потребления белка. Но если не ограничивать рацион полностью, а только сократить количество белка, результат будет таким же. А вот ограничение жиров или углеводов не влияло ни на образование свободных радикалов, ни на продолжительность жизни. Оказалось также, что польза ограничения белка для митохондрий связана с уменьшением содержания одной аминокислоты – метионина [1496] . Ограничение других пищевых аминокислот, за исключением метионина, не влияло ни на поток свободных радикалов в митохондриях, ни на повреждение ДНК, а ограничение только метионина влияло и на то и на другое [1497] . Это позволило сделать вывод, что утечка электронов в митохондриях, по-видимому, контролируется количеством метионина в рационе [1498] .

1496

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1497

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1498

Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/

Ограничение потребления метионина крысами в течение 7 недель уменьшало утечку электронов, образование свободных радикалов и повреждение митохондриальной ДНК [1499] . Это привело к замедлению старения, о чем свидетельствует снижение частоты развития ряда дегенеративных возрастных заболеваний и увеличение продолжительности жизни [1500] . Как уже говорилось в главах, посвященных другим путям борьбы со старением, таким как аутофагия (см. с. 32), существует множество способов продления жизни, но считается, что одно только ограничение метионина – это уже полпути к цели (продлению срока жизни), и достичь ее можно с помощью ограничения питания [1501] .

1499

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/

1500

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1501

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

Снизить потребление метионина можно тремя способами. Первый – уменьшить общее количество потребляемой пищи, но это обречет нас на полуголодное существование. Второй – снизить количество метионина, просто уменьшив общее количество потребляемого белка [1502] . Многие американцы едят в 2 раза больше белка, чем необходимо [1503] , поэтому речь может идти о том, чтобы перейти от чрезмерного потребления к рекомендуемому [1504] . В течение нескольких недель можно значительно улучшить метаболизм, вероятно, благодаря сопутствующему снижению потребления аминокислот с разветвленной цепью [1505] . Третий способ снизить потребление метионина – заменить животный белок на растительный [1506] (см. список источников метионина на с. 642).

1502

Lopez-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1503

What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture.Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf

1504

Lopez-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1505

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

1506

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

Когда-то сравнительно низкое содержание метионина в бобовых (фасоль, горох, нут и чечевица) считалось недостатком питания. Позднее исследователи долголетия пришли к выводу, что то, что ранее оценивалось как недостаток (ограничение метионина), оказывается преимуществом [1507] . Это согласуется с данными о том, что потребление бобовых может быть наиболее важным диетическим предиктором выживаемости у пожилых людей во всем мире [1508] , базой диеты долгожителей «голубых зон» [1509] . Считается, что растительная диета делает ограничение метионина «целесообразным в качестве стратегии продления жизни» [1510] .

1507

Lopez-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1508

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/

1509

Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970

1510

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

Что насчет антиоксидантных добавок?

Антиоксидантные добавки – это многомиллиардная индустрия [1511] . Их часто рекламируют как антивозрастные средства, несмотря на то что сотни исследований не нашли четких доказательств обещанного эффекта [1512] . Оказалось, что люди, принимающие антиоксидантные добавки, не живут дольше [1513] . Более того, в ходе рандомизированных контролируемых исследований выяснилось, что прием бета-каротина, витамина А и витамина Е приводит к увеличению смертности [1514] . Таким образом, потребители добавок, возможно, платят за то, чтобы сократить себе жизнь.

1511

Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1512

Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/

1513

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1514

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/

Поделиться с друзьями: