Живи долго! Научный подход к долгой молодости и здоровью
Шрифт:
К сожалению, с возрастом уровень Nrf2 [1687] и его сигнальная активность снижаются [1688] . Хотя тридцать минут езды на велосипеде могут повысить их уровень [1689] , но самым мощным природным индуктором Nrf2 на планете может быть сульфорафан [1690] – соединение, которое образуется, когда мы разжевываем крестоцветные овощи: брокколи, белокочанную капусту, коллард и цветную капусту. Сульфорафан, как и активные компоненты зеленого чая и куркумы, освобождает Nrf2, окисляя его белок-супрессор, что омолаживает пожилых мышей [1691] . Те из них, кого кормили сульфорафаном, имели более высокую силу хвата по сравнению с молодыми и так же хорошо двигались на беговой дорожке [1692] . Активация Nrf2 привела к уменьшению повреждений ДНК и потери мышечной массы, а также к улучшению работы сердца и продолжительности жизни.
1687
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/
1688
Zhou L, Zhang H, Davies KJA, Forman HJ. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 2018;14:35–40. https://pubmed.ncbi.nlm.nih.gov/28863281/
1689
Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160:471–9. https://pubmed.ncbi.nlm.nih.gov/32871230/
1690
Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep. 2020;37(6):797–826. https://pubmed.ncbi.nlm.nih.gov/32400766/
1691
Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018;2018:5438179. https://pubmed.ncbi.nlm.nih.gov/29977456/
1692
Bose C, Alves I, Singh P, et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell. 2020;19(11):e13261. https://pubmed.ncbi.nlm.nih.gov/33067900/
А что насчет нас? Сульфорафан также может восстанавливать активность Nrf2 в наших стареющих тканях [1693] ,
1693
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130. https://pubmed.ncbi.nlm.nih.gov/29074861/
1694
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/
1695
Riso P, Martini D, M?ller P, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595–602. https://pubmed.ncbi.nlm.nih.gov/20713433/
1696
Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/
1697
Egner PA, Chen JG, Zarth AT, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7(8):813–23. https://pubmed.ncbi.nlm.nih.gov/24913818/
1698
Heber D, Li Z, Garcia-Lloret M, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2014;5(1):35–41. https://pubmed.ncbi.nlm.nih.gov/24287881/
Овощи семейства крестоцветных настолько активизируют наши пути детоксикации, что любителям брокколи, чтобы получить прежнюю дозу удовольствия от кофе, возможно, придется пить его больше, поскольку метаболический путь, который выводит кофеин, может сильно активизироваться [1699] . Защиту, которую дают нам овощи семейства капустных, можно продемонстрировать даже на практике. Если перед пребыванием на солнце нанести на кожу экстракт брокколи, то покраснение от солнечного ожога уменьшится на 35 % за счет снижения повреждения тканей ультрафиолетовыми лучами благодаря активации Nrf2 [1700] .
1699
Eagles SK, Gross AS, McLachlan AJ. The effects of cruciferous vegetable-enriched diets on drug metabolism: a systematic review and meta-analysis of dietary intervention trials in humans. Clin Pharmacol Ther. 2020;108(2):212–27. https://pubmed.ncbi.nlm.nih.gov/32086800/
1700
Knatko EV, Ibbotson SH, Zhang Y, et al. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res (Phila). 2015;8(6):475–86. https://pubmed.ncbi.nlm.nih.gov/25804610/
Открытие того, что сульфорафан способен включать Nrf2, вероятно, является предвестником «новой парадигмы в науке о питании» [1701] . Потребление крестоцветных овощей снижает риск сердечно-сосудистых и онкологических заболеваний, а также смерти от всех причин, вместе взятых [1702] . Даже те, кто в среднем съедает всего одно соцветие брокколи в день, имеют более низкий уровень смертности, чем те, кто ест ее мало или вообще не ест [1703] . Однако преимущества брокколи могут выходить за рамки сульфорафана. Животные, которых кормили диетой с 1 % брокколи, жили дольше в сравнении с теми, которым давали только сульфорафан в количестве, равном содержащемуся в брокколи (только препарат, без добавления в рацион брокколи). Салаты с сульфорафаном превосходят чистые добавки с сульфорафаном [1704] .
1701
Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016;2016:7857186. https://pubmed.ncbi.nlm.nih.gov/26881038/
1702
Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/
1703
Mori N, Shimazu T, Charvat H, et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. Clin Nutr. 2019;38(2):631–43. https://pubmed.ncbi.nlm.nih.gov/29739681/
1704
Grunwald S, Stellzig J, Adam IV, et al. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes Nutr. 2013;8(5):439–48. https://pubmed.ncbi.nlm.nih.gov/23321956/
Усиление образования сульфорафана
Окисление сырых крестоцветных овощей может ускорить образование сульфорафана. Неплохо добавить в салат из нашинкованной капусты лимонный сок, но еще лучше – уксус, предположительно из-за более высокого содержания в нем кислоты. Однако при приготовлении капусты может быть и обратная ситуация. Вареная краснокочанная капуста должна сохранить темный цвет, а не порозоветь, это свидетельствует о более щелочной среде, которая помогает сохранить важнейшие крестоцветные компоненты от разрушения [1705] (см. see.nf/cabbageph). Однако наиболее важным приемом при приготовлении пищи является пауза между шинковкой и нагреванием, моя стратегия «порежь и оставь», подробно описанная в разделе «Крестоцветные овощи» в книге «Не сдохни!» и в моем видеоролике see.nf/hackandhold.
1705
Hanschen FS. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020;321:126694. https://pubmed.ncbi.nlm.nih.gov/32244140/
Жировой реактор
Мы знаем, что некоторые продукты обладают антиоксидантными свойствами, а другие, напротив, выступают в роли прооксидантов. Подобно тому как диетический индекс воспаления был разработан для оценки противо- и провоспалительных продуктов, для оценки оксидантного баланса было разработано более 20 систем. В целом чем больше стрелка отклоняется в сторону прооксидантов, тем выше риск развития сердечно-сосудистых заболеваний, болезней почек, а также риск заболеть и умереть от рака и всех остальных причин, вместе взятых. Хотя системы оценки имеют разный набор компонентов, все они сходятся в том, что физические упражнения, крестоцветные овощи и некоторые компоненты цельной растительной пищи, такие как клетчатка и каротиноидные фитонутриенты, являются чистыми антиоксидантами, подавляющими свободные радикалы, тогда как мясо, алкоголь, жир и курение – прооксидантами, генерирующими свободные радикалы. Из всех пищевых прооксидантов насыщенные жиры считаются самыми вредными [1706] .
1706
Hernandez-Ruiz A, Garcia-Villanova B, Guerra-Hernandez E, Amiano P, Ruiz-Canela M, Molina-Montes E. A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients. 2019;11(4):774. https://pubmed.ncbi.nlm.nih.gov/30987200/
Гетероциклические амины – канцерогенные соединения, образующиеся при варке мяса или курении табака [1707] , – могут вызывать образование свободных радикалов [1708] , но это не единственная причина, по которой мясо и мясные продукты способствуют окислительному стрессу [1709] .Наш желудок действует как биореактор [1710] , в котором гемовые белки крови и мышц окисляют жир в кислотной ванне желудка. При забое цыплят из них выкачивается только половина крови [1711] , а остаток оказывается мощным фактором, способствующим окислению жира. Понимая это, некоторые представители отрасли выступают за дополнительный этап обезглавливания в процессе забоя [1712] .
1707
Holland RD, Gehring T, Taylor J, Lake BG, Gooderham NJ, Turesky RJ. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Chem Res Toxicol. 2005;18(3):579–90. https://pubmed.ncbi.nlm.nih.gov/15777097/
1708
Carvalho AM, Miranda AM, Santos FA, Loureiro APM, Fisberg RM, Marchioni DM. High intake of heterocyclic amines from meat is associated with oxidative stress. Br J Nutr. 2015;113(8):1301–7. https://pubmed.ncbi.nlm.nih.gov/25812604/
1709
Macho-Gonzalez A, Garcimartin A, Lopez-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/
1710
Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med. 2001;31(11):1388–95. https://pubmed.ncbi.nlm.nih.gov/11728810/
1711
Mohamed B, Mohamed I. The effects of residual blood of carcasses on poultry technological quality. Food Nutri Sci. 2012;03(10):1382–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=23386
1712
Alvarado CZ, Richards MP, O’Keefe SF, Wang H. The effect of blood removal on oxidation and shelf life of broiler breast meat. Poult Sci. 2007;86(1):156–61. https://pubmed.ncbi.nlm.nih.gov/17179431/
Когда мы потребляем окисленный (прогорклый) жир, он может попасть в состав холестериновых частиц ЛПНП, что ускоряет развитие атеросклероза – снижения эластичности артерий, заболевания, являющегося основной причиной смерти [1713] . Уровень окисленных жиров в циркулирующих ЛПНП может удвоиться после употребления в течение 4 дней котлет из индейки, приготовленных на гриле [1714] . (Повреждающее действие может быть снижено употреблением ягод вместе с мясной пищей. См. главу «Ягоды»). В этом, очевидно, причина того, что вегетарианцы, по-видимому, защищены от сердечно-сосудистых заболеваний [1715] , но окисленные жиры образуются и при нагревании растительных масел [1716] . Любители сверхпереработанной нездоровой пищи больше страдают от повреждения ДНК, чем те, кто избегает «мусорной» пищи [1717] . Однако окисление животных жиров может быть еще хуже из-за «ужасных оксистеролов» [1718] .
1713
Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/
1714
Gorelik S, Kanner J, Schurr D, Kohen R. A rational approach to prevent postprandial modification of LDL by dietary polyphenols. J Funct Foods. 2013;5(1):163–9. https://www.sciencedirect.com/science/article/pii/S1756464612001466?via%3Dihub
1715
Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr.Published May 6, 2021. Accessed July 10, 2021.; https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628
1716
Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/
1717
Edalati S, Bagherzadeh F, Asghari Jafarabadi M, Ebrahimi-Mamaghani M. Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr. 2021;125(5):568–76. https://pubmed.ncbi.nlm.nih.gov/32513316/
1718
Macho-Gonzalez A, Garcimartin A, Lopez-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/
Антиоксидантный статус вегетарианцев
Как в систематических [1719] , так и в несистематических [1720] обзорах был сделан вывод о том, что растительная диета защищает от повреждения свободными радикалами, что «может объяснить, почему вегетарианцы живут дольше» [1721] . Большинство исследований показывают, что вегетарианцы, например, меньше подвержены окислительному стрессу [1722] , [1723] , [1724] , [1725] , [1726] , [1727] , [1728] , [1729] , но некоторые не демонстрируют заметных отличий от мясоедов [1730] , [1731] или рыбоедов [1732] или даже демонстрируют высокий уровень окислительного стресса [1733] , [1734] . Как я подробно описываю в ролике see.nf/antioxveg, расхождение результатов может быть связано с недостатком витамина B12 у вегетарианцев и веганов, которые не дополняют свой рацион продуктами, обогащенными витамином B или B12 [1735] , так как даже субклинический (бессимптомный) дефицит B12 связан с повышенным окислительным стрессом [1736] . Регулярное поступление витамина B12 в организм очень важно для использования всего спектра преимуществ растительного питания [1737] .
1719
Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies. Redox Biol. 2021;42:101869. https://pubmed.ncbi.nlm.nih.gov/33541846/
1720
Benzie IFF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal. 2010;13(10):1575–91. https://pubmed.ncbi.nlm.nih.gov/20222825/
1721
Burri BJ. Antioxidant status in vegetarians versus omnivores: a mechanism for longer life? Nutrition. 2000;16(2):149–50. https://pubmed.ncbi.nlm.nih.gov/10755825/
1722
Krajcovicova-Kudlackova M, Simoncic R, Bederova A, Klvanova J, Brtkova A, Grancicova E. Lipid and antioxidant blood levels in vegetarians. Nahrung. 1996;40(1):17–20. https://pubmed.ncbi.nlm.nih.gov/8975140/
1723
Kovacikova Z, Cerhata D, Kadrabova J, Madaric A, Ginter E. Antioxidant status in vegetarians and nonvegetarians in Bratislava region (Slovakia). Z Ernahrungswiss. 1998;37(2):178–82. https://pubmed.ncbi.nlm.nih.gov/9698645/
1724
Nagyova A, Kudlackova M, Grancicova E, Magalova T. LDL oxidizability and antioxidative status of plasma in vegetarians. Ann Nutr Metab. 1998;42(6):328–32. https://pubmed.ncbi.nlm.nih.gov/9895420/
1725
Boanca MM, Colosi HA, Craciun EC. The impact of the lacto-ovo vegetarian diet on the erythrocyte superoxide dismutase activity: a study in the Romanian population. Eur J Clin Nutr. 2014;68(2):184–8. https://pubmed.ncbi.nlm.nih.gov/24105324/
1726
Krajcovicova-Kudlackova M, Valachovicova M, Paukova V, Dusinska M. Effects of diet and age on oxidative damage products in healthy subjects. Physiol Res. 2008;57(4):647–51. https://pubmed.ncbi.nlm.nih.gov/17705666/
1727
Somannavar MS, Kodliwadmath MV. Correlation between oxidative stress and antioxidant defence in South Indian urban vegetarians and non-vegetarians. Eur Rev Med Pharmacol Sci. 2012;16(3):351–4. https://pubmed.ncbi.nlm.nih.gov/22530352/
1728
Manjari V, Suresh Y, Sailaja Devi MM, Das UN. Oxidant stress, anti-oxidants and essential fatty acids in South Indian vegetarians and non-vegetarians. Prostaglandins Leukot Essent Fatty Acids. 2001;64(1):53–9. https://pubmed.ncbi.nlm.nih.gov/11161585/
1729
Kim MK, Cho SW, Park YK. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr Res Pract. 2012;6(2):155–61. https://pubmed.ncbi.nlm.nih.gov/22586505/
1730
Szeto YT, Kwok TCY, Benzie IFF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition. 2004;20(10):863–6. https://pubmed.ncbi.nlm.nih.gov/15474873/
1731
Gajski G, Geric M, Vucic Lovrencic M, et al. Analysis of health-related biomarkers between vegetarians and non-vegetarians: a multi-biomarker approach. J Funct Foods. 2018;48:643–53. https://www.sciencedirect.com/science/article/abs/pii/S1756464618304109?via%3Dihub
1732
Poornima K, Cariappa M, Asha K, Kedilaya HP, Nandini M. Oxidant and antioxidant status in vegetarians and fish eaters. Indian J Clin Biochem. 2003;18(2):197–205. https://pubmed.ncbi.nlm.nih.gov/23105412/
1733
Krajcovicova-Kudlackova M, Simoncic R, Babinska K, Bederova A. Levels of lipid peroxidation and antioxidants in vegetarians. Eur J Epidemiol. 1995;11(2):207–11. https://pubmed.ncbi.nlm.nih.gov/7672077/
1734
Nadimi H, Yousefinejad A, Djazayery A, Hosseini M, Hosseini S. Association of vegan diet with RMR, body composition and oxidative stress. Acta Sci Pol Technol Aliment. 2013;12(3):311–8. https://pubmed.ncbi.nlm.nih.gov/24584960/
1735
Herrmann W, Schorr H, Purschwitz K, Rassoul F, Richter V. Total homocysteine, vitamin B12, and total antioxidant status in vegetarians. Clin Chem. 2001;47(6):1094–101. https://pubmed.ncbi.nlm.nih.gov/11375297/
1736
van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients. 2019;11(2):E482. https://pubmed.ncbi.nlm.nih.gov/30823595/
1737
Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8. https://pubmed.ncbi.nlm.nih.gov/24667752/
Грязные оксистеролы
Слишком высокое содержание холестерина в крови уже давно считается основным фактором риска развития болезни Альцгеймера [1738] . Однако холестерин не может напрямую проникать через гематоэнцефалический барьер [1739] , но это могут делать окисленные производные холестерина. Известные также как оксистеролы, окисленные холестерины, присутствующие в кровотоке, накапливаются в мозге [1740] , где они считаются движущей силой развития болезни Альцгеймера [1741] . Цепочку доказательств я привожу в своем видео see.nf/copdementia.
1738
Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/
1739
Wellington CL, Frikke-Schmidt R. Relation between plasma and brain lipids. Curr Opin Lipidol. 2016;27(3):225–32. https://pubmed.ncbi.nlm.nih.gov/27149391/
1740
Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/
1741
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7. https://pubmed.ncbi.nlm.nih.gov/26150787/
Оксистеролы могут быть в сотни раз токсичнее неокисленного холестерина [1742] : способствовать развитию широкого спектра возрастных заболеваний, включая атеросклероз [1743] , катаракту [1744] , почечную недостаточность [1745] , остеопороз [1746] и рак [1747] . Вот почему потребление яиц [1748] и других продуктов с высоким содержанием холестерина связано с повышенным риском развития рака молочной железы [1749] . Основной побочный продукт окисления холестерина в крови, известный как 27-гидроксихолестерин [1750] , является эстрогеном и увеличивает пролиферацию большинства клеток рака молочной железы [1751] – иногда даже на фоне приема эстроген-блокирующих препаратов [1752] .
1742
Otaegui-Arrazola A, Menendez-Carreno M, Ansorena D, Astiasaran I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/
1743
Iuliano L, Micheletta F, Natoli S, et al. Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem. 2003;312(2):217–23. https://pubmed.ncbi.nlm.nih.gov/12531208/
1744
Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/
1745
Otaegui-Arrazola A, Menendez-Carreno M, Ansorena D, Astiasaran I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/
1746
Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/
1747
Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/
1748
Si R, Qu K, Jiang Z, Yang X, Gao P. Egg consumption and breast cancer risk: a meta-analysis. Breast Cancer. 2014;21(3):251–61. https://pubmed.ncbi.nlm.nih.gov/24504557/
1749
Li C, Yang L, Zhang D, Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 2016;36(7):627–35. https://pubmed.ncbi.nlm.nih.gov/27333953/
1750
Asghari A, Umetani M. Obesity and cancer: 27-hydroxycholesterol, the missing link. Int J Mol Sci. 2020;21(14):4822. https://pubmed.ncbi.nlm.nih.gov/32650428/
1751
Nelson ER, Chang C, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol & Metab. 2014;25(12):649–55. https://pubmed.ncbi.nlm.nih.gov/25458418/
1752
Kaiser J. Cholesterol forges link between obesity and breast cancer. Science. 2013;342(6162):1028. https://pubmed.ncbi.nlm.nih.gov/24288308/