Журнал «Компьютерра» №46 от 15 декабря 2005 года
Шрифт:
объем 160-500 Гбайт (настольный вариант)
объем 40-120 Гбайт (мобильный вариант)
интерфейс USB 2.0 или FireWire
цена от $100 (за 40-Гбайт мобильную версию)
Неординарное дизайнерское решение вывела на рынок компания LaCie, представив жесткие диски Brick Hard Drive - в настольном (3,5 дюйма, USB 2.0) и мобильном (2,5 дюйма, USB 2.0 или USB 2.0 + FireWire) вариантах. «Кирпичики», окрашенные в белый, красный или синий цвет, напоминают детали детского конструктора Lego (идея принадлежит французскому дизайнеру Ora-Пto). Несколько накопителей можно устанавливать друг на друга. Настольные модели объемом от 300 Гбайт оснащены встроенным вентилятором, скорость вращения которого регулируется автоматически в зависимости от температуры винчестера.
512 Мбайт или 1 Гбайт флэш-памяти
поддержка MP3, WMA, ASF и OGG
эквалайзер с предустановками Normal, Rock, Jazz, Classic, Pop, Live
диапазон частот от 20 Гц до 20 кГц
отношение сигнал/шум 85 дБ
литий-полимерная батарея
интерфейс USB 2.0
габариты 54x43x11 мм
вес с батареей 30 г
цена за 1-Гбайт версию 85 евро, за 512-Мбайт - 68 евро
Новый плейер шведской фирмы проливает бальзам на душу, измученную вездесущими iPod-подобными поделками. Прежде всего, у него нет ЖК-экрана, отсутствует и FM-тюнер - все это лишнее для целевой аудитории (люди, занимающиеся спортом). Зато он имеет корпус из прочного пластика, обернутого мягкой и прочной резиной, что позволяет не вздрагивать при каждом его падении и не беспокоиться о сохранности, например, в дождь. Батарея обеспечивает 12 часов непрерывного воспроизведения без подзарядки. Наушники в комплекте не предусмотрены. Их придется покупать либо отдельно, либо в специальном наборе (стоит 20 евро) для MP-X, куда помимо наушников Koss Spark входит блок питания.
3,1-Мп КМОП-сенсор
1,5-дюймовый ЖК-экран
32 Мбайт встроенной памяти
4-кратный цифровой зум
интерфейс USB 1.1
поддержка карт SD (до 1 Гбайт)
габариты 88x60x15 мм
вес 64 г
цена $130
Эта «ультрабюджетная» модель выглядит гостьей из прошлого: по характеристикам она недалеко ушла от заурядных встроенных камер сотовых телефонов (чему виной, разумеется, небольшие габариты). Новинка позволяет делать снимки разрешением до 5 мегапикселов (конечно, с интерполяцией). Оптический зум отсутствует, фокус - ступенчатый (от 1,5 м до бесконечности). Одна радость: камера имеет перезаряжаемую литий-полимерную батарею, а не ограничивается щелочными элементами, как большинство ее товарок.
интерфейс USB 2.0
формат карт памяти: MS, MS Duo, CF, SD и xD
скорости записи: DVD+R и DVD-R 16x, DVD+R DL 8x,DVD-R DL 4х, DVD+RW 8x, DVD-RW 6x
цветовая система: NTSC, PAL
цена $299
Рекордер, подобно ранее выпущенному VRD-VC20, может записывать информацию с цифровых источников на DVD-диск без использования компьютера. Записанные диски можно просматривать на ПК или DVD-плейере. VRD-MC1 поддерживает технологию прямой печати PictBridge, для удобства пользования которой имеет 2-дюймовый ЖК-дисплей. Кроме того, для подключения цифровых видеокамер предусмотрен DV-вход, а для копирования на DVD фотографий с карт памяти - кард-ридер. Однако самой интересной функцией является возможность на лету переводить видеозаписи, хранящиеся на VHS-кассетах, в формат MPEG-2; для этого новинка оснащена S-Video и композитным видеовходом, а также аналоговым аудиовходом.
ТЕХНОЛОГИИ: Параллельные вычисления: кластеры
Авторы: Сергей Озеров, Алексей Калиниченко
Вершина современной инженерной мысли - сервер Hewlett-Packard Integrity Model SD64A. Огромная SMP-система, объединяющая в себе 64 процессора Intel Itanium 2 с частотой 1,6 ГГц и 256 Гбайт оперативной памяти, колоссальная производительность, внушительная цена - 6,5 млн. долларов…
Нижняя строчка свежего рейтинга пятисот самых быстрых компьютеров мира: принадлежащий группе компаний SunTrust Banks Florida кластер на основе блейд-серверов HP ProLiant BL-25p. 480 процессоров Intel Xeon 3,2 ГГц; 240 Гбайт оперативной памяти. Цена - меньше миллиона долларов.
Как-то странно получается, согласитесь: шесть с половиной миллионов долларов за 64-процессорный сервер и вдесятеро меньше - за примерно аналогичный по объему памяти и дисковой подсистеме, но уже 480-процессорный суперкомпьютер, причем от того же самого производителя. Впрочем, странно это только на первый взгляд: общего у двух компьютеров совсем немного. SD64A - представитель «классического»
направления симметричной многопроцессорности (SMP), хорошо знакомого нам по обычным серверам и многоядерным системам, позволяющий использовать «традиционное» параллельное ПО. Это кучка процессоров, много оперативной памяти и очень сложная система, сводящая их (и периферию сервера) в единое целое; причем даже весьма недешевые процессоры (по четыре тысячи долларов за каждый) и огромный объем оперативной памяти (по двести долларов за каждый гигабайт) - лишь малая часть стоимости этой «объединяющей» части сервера. Машина же SunTrust Bank Florida - представитель современного «кластерного» направления и по сути - просто набор соединенных в Ethernet-сеть обычных «недорогих» (по паре тысяч долларов за штуку) компьютеров. Серверная стойка, набор кабелей, система питания и охлаждения - вот и все, что эти компьютеры объединяет.Стандартное определение таково: кластер - это набор вычислительных узлов (вполне самостоятельных компьютеров), связанных высокоскоростной сетью (интерконнектом) и объединенных в логическое целое специальным программным обеспечением. Фактически простейший кластер можно собрать из нескольких персоналок, находящихся в одной локальной сети, просто установив на них соответствующее ПО[Всех желающих сделать это самостоятельно отсылаем к статье Михаила Попова «Еда и кластеры на скорую руку» (offline.computerra.ru/2002/430/15844), которая до сих пор актуальна]. Однако подобные схемы - скорее редкость, нежели правило: обычно кластеры (даже недорогие) собираются из специально выделенных для этой цели компьютеров и связываются друг с другом отдельной локальной сетью.
В чем идея подобного объединения? Кластеры ассоциируются у нас с суперкомпьютерами, круглые сутки решающими на десятках, сотнях и тысячах вычислительных узлов какую-нибудь сверхбольшую задачу, но на практике существует и множество куда более «приземленных» кластерных применений. Часто встречаются кластеры, в которых одни узлы, дублируя другие, готовы в любой момент перехватить управление, или, например, одни узлы, проверяя получаемые с другого узла результаты, радикально повышают надежность системы. Еще одно популярное применение кластеров - решение задачи массового обслуживания, когда серверу приходится отвечать на большое количество независимых запросов, которые можно легко раскидать по разным вычислительным узлам[Обычно эту штуку называют серверной фермой, именно по такому принципу работает Google]. Однако рассказывать об этих двух, если угодно, «вырожденных» случаях кластерных систем практически нечего - из их краткого описания и так ясно, как они работают; поэтому разговор наш пойдет именно о суперкомпьютерах.
Итак, суперкомпьютер-кластер. Он состоит из трех основных компонентов: собственно «вычислялок» - компьютеров, образующих узлы кластера; интерконнекта, соединяющего эти узлы в сеть, и программного обеспечения, заставляющего всю конструкцию «почувствовать» себя единым компьютером. В роли вычислительных узлов может выступать что угодно - от старой никому не нужной персоналки до современного четырехпроцессорного сервера, причем их количество ничем не ограниченно (ну разве что площадью помещения да здравым смыслом). Чем быстрее и чем больше - тем лучше; и как эти узлы устроены, тоже неважно[Обычно для упрощения решения и непростой задачи балансировки нагрузки на разные узлы кластера все узлы в кластере делают одинаковыми, но даже это требование не абсолютно]. Гораздо интереснее обстоят дела с интерконнектом и программным обеспечением.
История развития кластерных систем неразрывно связана с развитием сетевых технологий. Дело в том, что, чем больше элементов в кластере и чем они быстрее, (и, соответственно, чем выше быстродействие всего кластера), тем более жесткие требования предъявляются к скорости интерконнекта. Можно собрать кластерную систему хоть из 10 тысяч узлов, но если вы не обеспечите достаточной скорости обмена данными, то производительность компьютера по-прежнему оставит желать лучшего. А поскольку кластеры в высокопроизводительных вычислениях - это практически всегда суперкомпьютеры[Программирование для кластеров - весьма трудоемкая задача, и если есть возможность обойтись обычным сервером SMP-архитектуры с эквивалентной производительностью, то так и предпочитают делать. Поэтому кластеры используются только там, где SMP обходится слишком дорого, а со всех практических точек зрения требующие такого количества ресурсов машины - это уже суперкомпьютеры], то и интерконнект для них просто обязан быть очень быстрым, иначе полностью раскрыть свои возможности кластер не сможет. В результате практически все известные сетевые технологии хотя бы раз использовались для создания кластеров[Я даже слышал о попытках использования в качестве интерконнекта стандартных портов USB], причем разработчики зачастую не ограничивались стандартом и изобретали «фирменные» кластерные решения, как, например, интерконнект, основанный на нескольких линиях Ethernet, включаемых между парой компьютеров в параллель. К счастью, с повсеместным распространением гигабитных сетевых карт, ситуация в этой области становится проще[Почти половину списка суперкомпьютеров Top 500 составляют кластеры, построенные на основе Gigabit Ethernet], - они довольно дешевы, и в большинстве случаев предоставляемых ими скоростей вполне достаточно.