Чтение онлайн

ЖАНРЫ

Знание-сила, 2002 №09 (903)
Шрифт:

Вселенная сама по себе, без этой защищающей нас изобретательности, – место нам чужое, жестокое и убийственное, и недавнее открытие двух американских астрономов, Клайна и Отвиновского из Калифорнийского университета в Лос-Анджелесе, лишний раз в этом убеждает. Эти молодые ученые заинтересовались происхождением загадочной группы так называемых гамма-вспышек, объединяющей примерно 1,5 процента их общего числа. Все вспышки указанной группы имеют примерно одинаковые характеристики и были замечены в одной и той же части неба, что свидетельствует об их «местном» происхождении, то есть о том, что все они произошли в нашей галактике (Млечный Путь).

Напомню, что гамма-вспышки – это мощные пучки высокоэнергетичных гамма-лучей (их

энергия намного превосходит энергию рентгеновских лучей). Эти вспышки продолжаются несколько секунд и появляются на небосводе в самых разных местах, демонстрируя этим, что их источники находятся в самых разных частях Вселенной, преимущественно на ее окраине, очень далеко от нас. Предполагают, что эти вспышки выбрасываются при рождении или столкновении огромных «черных дыр», образовавшихся на самой ранней стадии эволюции Вселенной. Поскольку за истекшее время такие «дыры» за счет расширения Вселенной успели разлететься «до самых до окраин», то именно оттуда к нам и доходят – лишь сейчас – их гамма-фейерверки.

Однако теперь Клайн и Отвиновский, как уже сказано, выдвинули гипотезу, что упомянутая «особая группа» гамма-вспышек происходит от «местных» источников, лежащих внутри Млечного Пути, и, исходя из характеристик вспышек этой группы, подсчитали, что их источниками являются небольшие «черные дыры» массой примерно 100 миллионов тонн (порядка не очень большой горы на Земле), рассеянные в галактике. По этим подсчетам, в нашем ближайшем космическом соседстве (участке размерами в несколько световых лет – как от Солнца до ближайшей звезды Проксима Центавра) должно содержаться около 10 миллиардов таких «микродыр», ожидающих детонации. Если эта гипотеза верна, то в пределах Солнечной системы должна находиться, по меньшей мере, одна такая «тикающая бомба». Впрочем, авторы новой гипотезы утешают, что эффект ее возможного взрыва будет, скорее, «живописным» (на вкус астрономов, разумеется), нежели «драматическим». «Чтобы всерьез повлиять на жизнь на Земле, – говорит Клайн, – такая «дыра» должна быть хотя бы на таком же расстоянии от Земли, как Солнце». Й на том спасибо.

Катя Кабанова

Архитектура жизни, или структура нас

Жизнь – это наилучший пример сложности в действии. Развитие любого организма, будь то бактерия или бабуин, представляет собой невероятно сложную последовательность взаимодействий огромного множества участников.

Например, молекулы – наши с вами мельчайшие составляющие – обладают способностью к катализу химических реакций, а значит, собственным поведением.

А когда они объединены в какое-то целое, будь то клетка или ткань, то поведение многократно усложняется. Так, у клетки появляется способность к движению, изменению формы и росту. Однако, даже понимая принцип работы компонентов целого (будь то двигатель внутреннего сгорания или клетка). мы не всегда можем объяснить, как это целое функционирует. Другими словами, определение и описание молекулярной головоломки-паззла даст мало чего, если до конца не известны правила сборки. Словом, инструкция где?

Что такое тенсегрити?

Природа использует одни и те же правила игры, это доказывает повторяемость у микро- и макроскопических существ определенных структур (моделей, выкроек, назовите, как хотите): пентагоны, спирали, шестигранники, триангулы. Причем эти структуры возникают как в симметричных (кристаллы), так и в неупорядоченных (белки) веществах. Более того, часто живое маскируется под нежить: так, из строительных кирпичиков-атомов углерода, водорода, кислорода, азота и фосфора состоят и органические, и неорганические системы. Различие лишь в их расположении в трехмерном пространстве.

Этот феномен объединения компонентов в большие устойчивые структуры с новыми возможностями, которыми не обладают сами компоненты, известен как самосборка. Например, крупные молекулы в теле человека само-собираются в клеточные структуры, известные как органеллы, которые, в свою очередь, само-собираются в клетки, клетки – в ткани, ткани – в органы. Наше тело в результате представляет собой иерархическую систему из звеньев-подсистем. Как же мы так изумительно хорошо собраны?

Несмотря на довольно могучий опыт исследований, ученые все еще мало знают о тех силах, которые побуждают атомы к самосборке в молекулы. Даже какие группы молекул объединяются вместе, формируя клетки и ткани, и то не слишком понятно. Но за два последних десятилетия было открыто занимательное, если не сказать

интригующее, свойство самосборки. Во всем многообразии природных систем, таких как атом углерода, белки, вирусы, клетки, ткани и даже человеческий организм, существует один фундаментальный способ построения, носящий название «тенсегрити». Если напрямую перевести слово «tensegrity» с английского, получится что-то вроде «напряженности стойкости», что звучит по-русски неуклюже, поэтому будем дальше следовать хорошей отечественной традиции называть вещи их заграничными именами. Термин «тенсегрити» означает, что система стабильна за счет баланса в ее структуре сил сжатия-растяжения. (Есть еще одно значение этого слова, которое, пожалуй, более на слуху: последователи Карлоса Кастанеды утверждают, что тенсегрити – это магические пассы магов древней Мексики. Это забавное совпадение: тенсегрити-структуры, как вы увидите дальше, имеют весьма магический вид.)

Фундаментальность открытия тенсегрити в том, что оно имеет приложение в самых различных областях. Ученые говорят, что вездесущесть тенсегрити в природных системах такова, что, возможно, мы сможем по-новому взглянуть на эволюцию.

Сфера зернышка пыльцы,построенного в соответствии с принципами «тенсегрити»

Палка, палка, огуречик… Вот и вышел человечек!

Начнем с истории. Время – середина 1970-х годов, место – Йельский университет, личность – Дональд Ингбер. Студент всерьез интересовался биологией клетки, а еще скульптурой. Именно последняя навела Ингбера на мысль, что внешний вид живых существ – следствие некой заложенной природой изначальной архитектуры, если хотите – плана, в меньшей степени объясняется химическим строением. Молекулы и клетки, из которых сформированы наши ткани, рассуждал он, находятся в постоянном движении, они перемещаются, возвращаются обратно, снова шевелятся. Это нужно им для сохранения общей структуры – того, что мы называем телом. Такова жизнь.

Тенсегрити – многокомпонентные системы – механически устойчивы не потому, что каждый из компонентов прочен, а потому, что все они в совокупности, в системе находятся в состоянии устойчивого равновесия, что дает большую устойчивость к стрессу извне. Вот веник. Сломать его в собранном виде трудно, а отдельные прутья из него ломаются легко. Веник туг может служить не лучшим, но все же примером тенсегрити-системы.

Ингбер выделил два типа тенсегрити-структур. Первый – это геодезические купола, фундаментальная основа, созданная из прочных распорок, каждая из которых испытывает сжатие или растяжение. Распорки, соединяясь, образуют триангулы, пентагоны или гексагоны, и каждая распорка ориентирована таким образом, чтобы удерживать каждый соединительный узел в фиксированном положении, тем самым гарантируя устойчивость всей их сложной системы.

Шея жирафы – наглядный пример эффективности взаимодействия костей и мускулов в живом организме.

Устойчивость тенсегрити-структур второго типа (их изобрел скульптор Кеннет Снельсон) осуществляется за счет так называемого предварительного напряжения. В его изящных работах сочетаются структуры, перманентно испытывающие только растяжение, и структуры, подвергающиеся только напряжению сжатия. Даже перед применением внешней силы к подобному тенсегрити-изделию оно уже натянуто в одном и сжато в другом месте, то есть «предварительно напряжено». Приложив давление, получим внутри системы противоборствующие силы: ее прочные, сжатые компоненты будут растягивать гибкие, растянутые, в то время как те – сжимать первых. Вот и равновесная система!

Медаль, однако, со свойственной ею подлостью имеет оборотную сторону. Нужно, чтобы натяжение между составляющими этой системы сохранялось длительное время. Исследователь Ричард Бакминстер Фуллер предложил рецепт для устойчивого положения сводов: «постоянное растяжение плюс местное сжатие». Фуллер разработал знаменитую пространственную конструкцию «геодезического купола» (полусферы, собранной из тетраэдров), которая стала одной из крупнейших конструктивных новаций двадцатого века.

Итак, и в скульптурах Снельсона, и в куполах Фуллера находящиеся под давлением элементы постройки расположены максимально близко друг по отношению к другу и находятся в состоянии упругого равновесия. Поэтому самые крепкие и прочные здания получаются при использовании тенсегрити-структур, и это, заметим, при одинаковом количестве стройматериалов.

Поделиться с друзьями: