Аппаратные интерфейсы ПК. Энциклопедия
Шрифт:
Естественно, ПУ не должно «подвешивать» процессор на шинном цикле обмена. Это гарантирует механизм тайм-аутов PC, который принудительно завершает любой цикл обмена, длящийся более 15 мкс. В ряде реализаций EPP за тайм-аутом интерфейса следит сам адаптер — если ПУ не отвечает в течение определенного времени (5 мкс), цикл прекращается и в дополнительном (нестандартизованном) регистре состояния адаптера фиксируется ошибка.
Устройства с интерфейсом EPP, разработанные до принятия IEEE 1284, отличаются началом цикла: строб
С программной точки зрения контроллер EPP-порта выглядит просто (см. табл. 1.5). К трем регистрам стандартного порта, имеющим смещение 0, 1 и 2 относительно базового адреса порта, добавлены два регистра (
Назначение регистров стандартного порта сохранено для совместимости EPP-порта с ПУ и ПО, рассчитанными на применение программно-управляемого обмена. Поскольку сигналы квитирования адаптером вырабатываются аппаратно, при записи в регистр управления CR биты 0, 1 и 3, соответствующие сигналам
Использование регистра данных EPP позволяет осуществлять передачу блока данных с помощью одной инструкции
Важной чертой EPP является то, что обращение процессора к ПУ осуществляется в реальном времени — нет буферизации. Драйвер способен отслеживать состояние и подавать команды в точно известные моменты времени. Циклы чтения и записи могут чередоваться в произвольном порядке или идти блоками. Такой тип обмена удобен для регистро-ориентированных ПУ или ПУ, работающих в реальном времени, например устройств сбора информации и управления. Этот режим пригоден и для устройств хранения данных, сетевых адаптеров, принтеров, сканеров и т.п.
К сожалению, режим EPP поддерживается не всеми портами — он отсутствует, к примеру, в ряде блокнотных ПК. Так что при разработке собственных устройств ради большей совместимости с компьютерами приходится ориентироваться на режим ECP.
1.3.4. Режим ECP
Протокол ECP (Extended Capability Port — порт с расширенными возможностями) был предложен Hewlett Packard и Microsoft для связи с ПУ типа принтеров или сканеров. Как и EPP, данный протокол обеспечивает высокопроизводительный двунаправленный обмен данными хоста с ПУ.
Протокол ECP в обоих направлениях обеспечивает два типа циклов:
♦ циклы записи и чтения данных;
♦ командные циклы записи и чтения.
Командные циклы подразделяются на два типа: передача канальных адресов и передача счетчика RLC (Run-Length Count).
В отличие от EPP вместе с протоколом ЕСР сразу появился стандарт на программную (регистровую) модель его адаптера, изложенный в документе «The IEEE 1284 Extended Capabilities Port Protocol and ISA Interface Standard» компании Microsoft. Этот документ определяет свойства протокола, не заданные стандартом IEEE 1284:
♦ компрессия данных хост-адаптером по методу RLE;
♦ буферизация FIFO для прямого и обратного каналов;
♦ применение DMA и программного ввода-вывода.
Компрессия в реальном времени по методу RLE (Run-Length Encoding) позволяет достичь коэффициента сжатия 64:1 при передаче растровых изображений, которые имеют длинные строки повторяющихся байт. Компрессию можно использовать, только если ее поддерживают и хост, и ПУ.
Канальная адресация ECP применяется для адресации множества логических устройств, входящих в одно физическое. Например, в комбинированном устройстве факс/принтер/модем, подключаемом только к одному параллельному порту, возможен одновременный прием факса и печать на принтере. В режиме SPP, если принтер установит сигнал занятости, канал будет занят данными, пока
принтер их не примет. В режиме ECP программный драйвер просто адресуется к другому логическому каналу того же порта.Протокол ECP переопределяет сигналы SPP (табл. 1.6).
Таблица 1.6. Сигналы LPT-порта в режиме ввода-вывода ECP
Контакт | Сигнал SPP | Имя в ECP | I/O | Описание |
---|---|---|---|---|
1 | Strobe# | HostClk | О | Строб данных, используется в паре с PeriphAck для передачи в прямом направлении (вывод) |
14 | AutoLF# | HostAck | О | Указывает тип цикла (команда/данные) при передаче в прямом направлении. Используется как сигнал подтверждения в паре с PeriphClk для передачи в обратном направлении |
17 | SelectIn# | 1284Active | O | Высокий уровень указывает на обмен в режиме IEEE 1284 (в режиме SPP уровень низкий) |
16 | Init# | ReverseRequest# | O | Запрос реверса. Низкий уровень сигнализирует о переключении канала на передачу в обратном направлении |
10 | Ack# | PeriphClk | I | Строб данных, используется в паре с HostAck для передачи в обратном направлении |
11 | Busy | PeriphAck | I | Используется как сигнал подтверждения в паре с HostClk для передачи в прямом направлении. Индицирует тип команда/данные при передаче в образном направлении |
12 | PaperEnd | AckReverse# | I | Подтверждение реверса. Переводится в низкий уровень в ответ на ReverseRequest# |
13 | Select | Xflag¹ | I | Флаг расширяемости |
15 | Error# | PeriphRequest#¹ | I | Устанавливается ПУ для указания на доступность (наличие) обратного канала передачи¹ |
2-9 | Data [0:7] | Data [0:7] | I/O | Двунаправленный канал данных |
¹ Сигналы действуют в последовательности согласования (см. ниже)
Адаптер ECP тоже генерирует внешние протокольные сигналы квитирования аппаратно, но его работа существенно отличается от режима EPP.
На рис. 1.5, а приведена диаграмма двух циклов прямой передачи: за циклом данных следует командный цикл. Тип цикла задается уровнем на линии
Рис. 1.5. Передача в режиме ECP: а — прямая, б — обратная
В отличие от диаграмм обмена EPP, на рис. 1.5 не приведены сигналы циклов системной шины процессора. В данном режиме обмен программы с ПУ разбивается на два относительно независимых процесса, которые связаны через FIFO-буфер. Обмен драйвера с FIFO-буфером может осуществляться как с использованием DMA, так и программного ввода-вывода. Обмен ПУ с буфером аппаратно выполняет адаптер ECP. Драйвер в режиме ЕСР не имеет информации о точном состоянии процесса обмена, но обычно важно только то, завершен он или нет.
Прямая передача данных на внешнем интерфейсе состоит из следующих шагов:
1. Хост помещает данные на шину канала и устанавливает признак цикла данных (высокий уровень) или команды (низкий уровень) на линии
2. Хост устанавливает низкий уровень на линии
3. ПУ отвечает установкой высокого уровня на линии
4. Хост устанавливает высокий уровень линии