Авиация и космонавтика 2011 09
Шрифт:
Правая консоль крыла Су-17 (зав. № 86–01). Под фюзеляжем видны узлы подвески стартовых ускорителей СПРД-110
Следует сказать, что с проблематикой обеспечения должной прочности и эксплуатационной надежности подвижного крыла конструкторы "Кулона" справились успешно и каких-либо проблем по этой части у Су-17 не отмечалось (в отличие от микояновского МиГ-23, путь которого оказался на редкость тернистым — крыло самолета потребовало продолжительной доводки, в том числе и в отношении прочности, консоли "трещали", а допустимая перегрузка машин первых модификаций по этой причине ограничивалась значением +5,0 даже при максимальной стреловидности и без боевой нагрузки, причем расправленные консоли сводили допустимую перегрузку до "троечки", что выглядело более чем скромно для истребителя).
Поперечное управление самолетом, в отличие
Устранение провисания элеронов требовало серьезного вмешательства в устройство системы управления с установкой раздвижных тяг, которые бы сохраняли элероны в плоскости крыла по мере перемещения консолей, отрабатывая их увод. Однако летчики не жаловались на возникновение каких-либо неприятных особенностей и на усложнение конструкции не пошли, рассудив, что диапазоны отклонения элеронов в любом положении крыла сохранялись достаточными, как и ход ручки, и характеристики поперечного управления оставались приемлемыми.
Самолет сохранил чистые аэродинамические формы, которыми отличался его предшественник Су-7: так, коэффициент лобового сопротивления на дозвуке (со сложенным крылом) был почти на 20 % меньше, чем у микояновского истребителя- бомбардировщика МиГ-23Б в той же конфигурации. В то же время по показателю аэродинамического качества, при минимальной стреловидности равного 11,7, самолет несколько уступал конкуренту: у МиГ-23Б за счет цельноповоротного крыла с небольшим наплывом оно достигало значения 12,2. А еще МиГ-23Б обладал несколько более выигрышной сверхзвуковой аэродинамикой, унаследованной от истребителя-прототипа. При околозвуковых и сверхзвуковых скоростях, когда значительную роль начинает играть волновое сопротивление, связанное с возникновением ударных волн, коэффициент лобового сопротивления у Су-17 существенно возрастал.
Топливо размещалось в трех мягких вкладных баках и одном герметичном отсеке в фюзеляже, а также в двух кессонах консолей (как и на Су-7БКЛ). Кроме того, под самолет на держатели БДЗ-57М при замене штатных замков на специальные "баковые" с пиротолкателями, можно было подвесить до четырех дополнительных баков емкостью по 600 л, типовых и оставшихся еще с комплекта Су-7Б, или два специально разработанных для С-32 вместительных подвесных бака на 1150 литров керосина каждый. Они крепились на крайние балочные держатели неподвижной части крыла. Отработка новых подвесных баков выполнялась на Су-17 № 86–01 с марта 1971 года. Баки увеличенной емкости прошли испытания также на Су-7БКЛ и Су-7У, однако там приняты не были из-за негативного влияния на поведение самолета. В первом варианте они не оснащались носовыми дестабилизаторами, установленными позднее по результатам испытаний и предназначавшимися для быстрого отвода ПТБ после их сброса от самолета, поскольку пиротехнические толкатели держателей с отстрелом объемистых баков на должное расстояние не справлялись. Полная заправка с подвесными баками достигала 6900 л, а без них — 3400 л (здесь и далее под вместимостью баков понимается их эксплуатационная емкость, за вычетом невырабатываемого остатка). Это обеспечивало приемлемую дальность полета, несмотря на возросший вес серийных машин и прежнюю силовую установку, неэкономичность которой оставалась той еще проблемой.
Зависимость аэродинамического качества горизонтального полета самолета Су-17 на высоте 10000 м от скорости полета при различной стреловидности крыла
На самолете был установлен турбореактивный двигатель ОКБ А. М. Люльки АЛ-7Ф1-250. Он развивал тягу 6800 кгс на максимальном режиме и 9600 кгс на полном форсаже. ТРДФ этой модификации отличались от своих предшественников дублированной автоматикой компрессора и системой высотноскоростной коррекции приемистости двигателя, предназначенной для сокращения времени приемистости двигателя в диапазоне высот 0 — 5500 м
и скоростях более 150 км/ч. Лопатки первой и второй ступеней компрессора выполнялись из титана. Этот материал к тому времени в СССР прошел достаточную технологическую отработку, а его стоимость со временем удалось снизить до уровня цены качественного алюминиевого сплава.Для управления конусом и створками перепуска воздуха входного устройства Су-17 оснащался электрогидравлической системой управления воздухозаборником ЭСУВ-1В (она же устанавливалась и на Су- 75 различных модификаций), но с одним новшеством — для улучшения работы двигателя на земле и скоростях полета менее 400 км/ч (на этих режимах через воздухозаборник к двигателю подводилось гораздо меньше воздуха, чем требовалось, что сильно снижало его тягу) створки под действием разрежения в канале имели свободный ход внутрь, благодаря чему к двигателю поступал дополнительный воздух и его тяга увеличивалась примерно на 6 %. После набора скорости створки автоматически захлопывались из-за выравнивания давления внутри канала и обтекающего потока воздуха снаружи. В дальнейшем это удачное решение нашло применение на всех последующих модификациях самолета, независимо от типа двигателя и геометрии его воздушного канала.
Несколько изменилось шасси самолета — установили новую управляемую носовую опору, поменялась кинематика, были доработаны створки. Во избежание попадания грязи в нишу передней стойки передняя пара ее створок при движении по земле закрывалась, защищая от загрязнения замки и шарнирные механизмы. Для главных опор шасси были разработаны, испытаны и приняты в опытную эксплуатацию специальные лыжи (или, как их называли в документах, — лыжные приставки к главным стойкам шасси). Они устанавливались на место тормозных колес КТ-69/ 4LU (880 х 230 мм), при этом на передней ноге оставалось штатное нетормозное колесо К2-106А (660 х 200 мм). Управление поворотом переднего колеса (угол разворота ±27°) осуществлялось летчиком отклонением педалей управления рулем направления при помощи одноступенчатого механизма разворота (МРК). При его отключении система работала в режиме демпфирования колебаний, переднее колеса становилось самоориентирующимся, а управление самолетом на земле осуществлялось при помощи раздельного торможения колес основных стоек шасси.
Лыжи с титановыми полозьями можно было использовать на грунтовых ВПП с прочностью покрытия 8 кгс/см 2или меньше и аэродромах с укатанным снежным покровом. При отработке системы проблемы возникали с поведением машины на скользком снежном или грязевом покрытии, где самолет на лыжах норовил стронуться с места уже при газовке двигателя. Для удержания С-32 на старте и аварийного торможения, начиная с самолета № 87–01, сразу же за носком лыжи размещался мощный титановый башмак, выдвигавшийся из полоза под действием пневмоцилиндра. Лыжи планировалось оснастить и системой смазки, уменьшающей их трение и износ при движении на лыжах по сухим и липким грунтам (особенно на небольших скоростях при рулежке), а также для исключения примерзания в зимнее время к грунту и снегу. Она включала размещенные в центроплане воздушные баллоны вытеснительной системы подачи жидкости к полозьям для принудительной смазки скользящих поверхностей спиртоглицериновой смесью под давлением. Однако она так и не была внедрена в эксплуатацию. В связи с этим, начиная с машины № 90–01, узлы для установки оборудования были упразднены. Новые лыжи, тем не менее, остались. Они были заметно лучше ранних образцов и все же ими предпочитали не пользоваться. Полозья без системы смазки примерзали к снегу, а для доставки самолета на ВПП и его перемещения после посадки в большинстве случаев требовалось под каждую лыжу подогнать специальную колесную буксировочно-рулежную тележку. Она могла тормозиться воздухом от пневмосистемы самолета с управлением из кабины. В конечном итоге "зимняя обувь" так и не прижилась на машине, оставаясь лежать на складах мертвым грузом — ВПП по-прежнему регулярно чистили от снега силами личного состава, а с грунта летали редко.
Испытания лыжного шасси на грунтовых площадках разной плотности с травяным и другим покрытием велись на машине № 86–02. Отработка лыжного шасси продолжалась и позже, включая более новые модификации самолета, пусть и не будучи востребованным в строю (просто задание это оставалось не снятым заказчиком со времен, когда всех и вся пытались научить летать с земли), но подтверждало шуточное определение научно-исследовательской работы как возможности удовлетворения собственного любопытства за государственный счет).
Авиационный турбореактивный двигатель АЛ-7Ф1-250, устанавливавшийся на истребителе-бомбардировщике Су-17
Щитки главной опоры шасси самолета Су-17
Для сокращения длины разбега могли использоваться уже отработанные на Су-7БМ сбрасываемые пороховые ускорители СПРД-110, развивающие кратковременную тягу до 3000 кг, а для уменьшения длины пробега при посадке самолет оснащался парашютно-тормозной установкой ПТ-7БУ по типу применявшейся на Су-7БКЛ с объемистым контейнером в основании киля и двумя парашютами площадью 25 м 2каждый. Такая система была куда эффективнее обычной с одним "тормозником" и доказала свои выгоды в эксплуатации.