Чтение онлайн

ЖАНРЫ

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:

Примечательно, что этого не сделали держатели данных. Никто не обнаружил желания или нормативно-правовой инициативы использовать данные таким образом. Ведь если бы источники данных — Бюро транспортной статистики, Федеральное управление гражданской авиации и Национальная метеорологическая служба США — осмелились предсказать задержку коммерческих рейсов, Конгресс, наверное, провел бы слушания, и чиновники получили бы по заслугам. Поэтому за дело взялась группа ребят в толстовках и с математическим образованием. Авиакомпании тоже не могли — и не хотели — строить такие прогнозы. Они пользовались преимуществами как можно более неясного положения дел. А прогнозы службы FlightCaster оказались настолько точными, что даже сотрудники авиакомпании стали ими пользоваться: поскольку авиакомпании не объявляют о задержке вплоть до последней минуты, они хоть и являются основным источником

информации, но не самым своевременным.

Ребята мыслили категориями больших данных, и это вдохновило их на реализацию идеи: общедоступные данные можно обработать так, чтобы дать миллионам людей ответы на животрепещущие вопросы. Служба FlightCaster Брэдфорда Кросса стала первопроходцем, но с большим трудом. В том же месяце, когда был запущен сайт FlightCaster (август 2009 года), энтузиасты из команды FlyOnTime.us начали в больших объемах собирать открытые данные, чтобы создать собственный сайт. В конечном счете преимущества, которыми наслаждалась компания FlightCaster, пошли на спад. В январе 2011 года Кросс и его партнеры продали свой стартап компании Next Jump, управляющей программами корпоративных скидок, в которых используются методы обработки больших данных.

Тогда Кросс обратил внимание на другую стареющую отрасль — новостные СМИ, увидев в ней нишу, которую мог бы занять внешний новатор. Его стартап Prismatic объединял и ранжировал контент со всего интернета на основе анализа текста, пользовательских настроек, популярности, связанной с социальными сетями, и анализа больших данных. Важно отметить, что система не делала различий между блогом подростка, корпоративным сайтом или статьей в Washington Post: если контент считался востребованным и популярным (что определялось по частоте просмотров и рекомендаций), он располагался в верхней части экрана.

Служба Prismatic стала отражением нового способа взаимодействия со СМИ, который присущ молодому поколению. Его суть в том, что источник информации не столь важен. И это унизительное напоминание СМИ о том, что общество в целом лучше осведомлено о событиях, чем они сами. Претенциозным журналистам приходится конкурировать с блогерами, которые могут днями не вылезать из своих халатов. Ключевым моментом является то, что служба Prismatic вряд ли появилась бы внутри самой медиаиндустрии, хоть она и собирает множество информации. Завсегдатаям бара Национального клуба печати не пришло в голову повторно использовать данные о потреблении СМИ в интернете. И специалисты по аналитике из Армонка (Нью-Йорк) или Бангалора (Индия) до этого не додумались. Зато Кросс, пользующийся дурной славой аутсайдера с растрепанными волосами и неторопливой речью, сумел предположить, что с помощью данных можно сообщать миру, на что следует обратить внимание, и делать это лучше редакторов New York Times.

Творческие аутсайдеры с блестящими идеями и их способность мыслить категориями больших данных напоминают происходившее на заре интернет-коммерции в середине 1990-х годов. Тогда первопроходцами становились те, кто не был обременен закоренелым мышлением или институционными ограничениями более старых отраслей. Так, хедж-фондовый специалист по статистике Джефф Безос основал книжный интернет-магазин, а разработчик программного обеспечения Пьер Омидьяр создал интернет-аукцион. Заметьте — не Barnes & Noble и Sotheby’s. Современные лидеры с таким масштабным мышлением зачастую не располагают данными. Зато при этом у них нет корыстных интересов или финансовых стимулов, которые мешали бы им раскрыть потенциал своих идей.

Как мы уже убедились, бывают случаи, когда компания сочетает в себе сразу несколько характеристик, позволяющих оперировать большими данными. Возможно, Эциони и Кросс оказались впереди благодаря своей сенсационной идее, но кроме нее у них были навыки. Сотрудники Teradata и Accenture тоже времени зря не теряют и время от времени выдают отличные идеи. Прототипы идей по-прежнему помогают оценить роль каждой компании. Операторы мобильной связи, о которых шла речь в предыдущей главе, собирают гигантский объем данных, но испытывают трудности в его использовании. Однако они могут передать эти данные тем, кто сумеет извлечь из них новую ценность. Подобным образом компания Twitter с самого начала передала права лицензирования на свои «пожарные шланги данных» двум другим компаниям.

Некоторые компании располагают всеми инструментами для реализации возможностей, которые дают большие данные. Google собирает информацию (например, об опечатках в поисковых запросах), имеет великолепную идею создать с их помощью лучшее в мире средство проверки правописания и блестяще реализует

ее своими силами. Учитывая множество других видов деятельности, компания Google получает выгоду от вертикальной интеграции в цепочку создания ценности больших данных, где она занимает все три позиции. В то же время Google предоставляет открытый доступ к некоторым своим данным через интерфейсы прикладного программирования (API), чтобы из них можно было извлечь дополнительную ценность. Одним из примеров являются бесплатные карты Google, которые используются в интернете повсеместно — от списков недвижимости до сайтов государственных учреждений (хотя часто посещаемым сайтам все же приходится за них платить).

У Amazon есть и мышление, и знания, и данные. По сути, компания выстраивала свою бизнес-модель именно в таком (обратном по сравнению с нормой) порядке. Вначале у нее была только идея знаменитой рекомендательной системы. В объявлении о новом выпуске акций на фондовой бирже в 1997 году описание «совместной фильтрации» появилось раньше, чем компания Amazon узнала, как эта система будет работать на практике, и получила достаточно данных, чтобы сделать ее полезной.

И Google, и Amazon обладают равными возможностями, но руководствуются разными стратегиями. Приступая к сбору данных, компания Google сразу учитывает возможность их вторичного применения. Например, ее автомобили Street View собирали информацию GPS не только для картографической службы Google, но и для обучения самоуправляемых автомобилей. [119] Amazon, напротив, больше ориентирована на первичное использование данных и обращается к вторичному только в качестве бонуса. Например, ее рекомендательная система опирается на «сигналы» в виде действий пользователя на сайте, но компания ни разу не прибегла к полученной информации для непредусмотренных прогнозов (например, состояния экономики или вспышек гриппа).

119

О функции Google Street View и самоуправляемых автомобилях: Kirwan, Peter. This car drives itself // Wired UK. — January 4, 2012.

Устройства для чтения электронных книг Amazon Kindle могут показать, на какой странице читатели оставили множество примечаний и подчеркнутых отрывков, но Amazon не продает эту информацию авторам и издателям. Маркетологов заинтересовали бы наиболее популярные отрывки, чтобы повысить продажи книг. Авторы хотели бы узнать, на каком месте их выдающихся произведений большинство читателей забрасывают чтение, и улучшить их. Издатели желали бы выявить темы, сулящие очередной бестселлер. Но Amazon оставляет это поле данных невспаханным.

С умом используя большие данные, можно преобразовать бизнес-модель компании и коренным образом изменить способы взаимодействия с давними партнерами. Один из потрясающих примеров — история о том, как крупному европейскому автопроизводителю удалось перестроить коммерческие отношения с поставщиком запчастей с помощью данных, полученных в рабочих условиях (поскольку пример взят из частной практики аналитика, который занимался обработкой этих данных, мы, к сожалению, не вправе разглашать названия компаний).

Современные автомобили оборудованы чипами, датчиками и программным обеспечением, которые передают технические данные на компьютеры автопроизводителей во время техобслуживания. Типичный автомобиль среднего класса содержит около 60 микропроцессоров, и треть его себестоимости приходится на электронику. [120] Так что автомобили стали подходящими преемниками кораблей, которые Мори называл «плавающими обсерваториями». [121] Информация о том, как части автомобиля ведут себя в полевых условиях (и повторное объединение такой информации для корректировки), может стать большим конкурентным преимуществом для компаний, которые ею владеют.

120

Автомобильные микропроцессоры и электроника, которая составляет треть стоимости автомобиля: Kirwan, Peter. This car drives itself // Wired UK. — January 4, 2012. URL: http://www.wired.co.uk/magazine/archive/2012/01/features/this-car-drives-itself?page=all.

121

То, что Мори называл «плавающими обсерваториями»: труд Мори «Физическая география моря».

Поделиться с друзьями: