Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:
The-Numbers.com на основе баз данных и внушительного математического аппарата сообщает независимым голливудским продюсерам вероятный доход от того или иного фильма задолго до того, как отснят первый дубль. База данных компании обрабатывает около 30 миллионов записей о каждом коммерческом кинофильме США за последние десятилетия. Записи содержат сведения о бюджете, жанре, актерском составе, съемочной группе, наградах, доходах (включая американские и международные кассовые сборы, зарубежные права, продажу и аренду видеозаписей) и не только. «Компания разработала карту сети из миллиона взаимосвязей, таких как “этот сценарист работал с этим режиссером; этот режиссер работал с этим актером”», — объясняет основатель и президент компании Брюс Нэш.
The-Numbers.com умеет находить сложные корреляции, которые предсказывают доход от кинопроектов. Продюсеры предоставляют эту информацию студиям и инвесторам, чтобы получить финансовую поддержку. Повозившись с переменными, компания даже может подсказать клиентам, как увеличить их доход (или свести к минимуму финансовые
Таким образом, вырисовывается определенный переход в принятии корпоративных решений (например, стоит ли снимать тот или иной фильм или с каким бейсболистом подписать контракт). Эрик Бриньолфссон, бизнес-профессор Массачусетского технологического института, и его коллеги сравнили показатели тех компаний, которые преуспели в принятии решений на основе данных, и тех, кто не придал этому подходу особого значения. Обнаружилось, что уровень производительности в таких компаниях на 6% выше, чем у тех, кто, принимая решения, не опирается на данные. [128] Такой подход дает значительное преимущество, хотя и кратковременное, поскольку все больше компаний применяют в своей практике подходы на основе больших данных.
128
Исследование Э. Бриньолфссона: Brynjolfsson, Erik. Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? / Erik Brynjolfsson, Lorin Hitt and Heekyung Kim // Unpublished working paper. — April 2011.
Вопрос полезности
Благодаря тому что большие данные для многих компаний превращаются в источник конкурентного преимущества, изменится структура целых отраслей. Однако награды распределятся неравномерно. В выигрыше останутся крупные и мелкие компании, потеснив остальных.
Крупнейшие игроки, такие как Amazon и Google, продолжат расти. Но, в отличие от индустриальной эпохи, их конкурентное преимущество будет опираться на физические масштабы. Огромная техническая инфраструктура их центров обработки данных, несомненно, важная, но не самая значительная характеристика: ресурсы для цифрового хранения и обработки данных можно недорого арендовать всего за несколько минут. Компании могут регулировать необходимое количество вычислительной мощности на основе фактического спроса, тем самым превращая в переменную стоимость то, что раньше считалось фиксированной. Это подрывает преимущества масштаба на основе технической инфраструктуры, которым уже давно пользуются крупные компании.
Масштаб все еще имеет значение, но его фокус сместился. Теперь важен масштаб данных. Под ним подразумевается наличие больших пулов данных и возможность легко получать еще больше. Таким образом, крупные держатели данных будут процветать, собирая и храня больше «сырых» материалов о своей деятельности, из которых можно извлечь выгоду при повторном использовании.
Задача победителей в области малых данных, равно как и «чемпионов», ведущих свою деятельность вне интернета (например, Walmart, FedEx, Proctor & Gamble, Nestle, Boeing и пр.), состоит в том, чтобы высоко ценить силу больших данных, а также стратегически подходить к сбору и анализу информации. И начинающие, и проверенные временем компании стараются занять в новых бизнес-областях положение, которое позволило бы им записывать огромные потоки данных. Пример тому — «набеги» Apple на мобильные телефоны. До появления iPhone мобильные операторы успели накопить потенциально ценные сведения об абонентах, но не сумели извлечь из них выгоду. Компания Apple, напротив, потребовала указать в своих договорах с операторами, что ей достанется большая часть наиболее полезной информации. Собирая данные от десятков операторов по всему миру, Apple получает гораздо более полную картину использования мобильных телефонов, чем любой из операторов сотовой связи. Масштабное преимущество Apple основано на данных, а не на материальных ресурсах.
Большие данные открывают захватывающие возможности для всех. Умные и проворные мелкие игроки извлекут преимущества «масштаба без нагромождений» (цитируя знаменитую фразу профессора Бриньолфссона). [129] Они обеспечат себе большое виртуальное присутствие при незначительных материальных ресурсах, а также широко внедрят инновационные решения при небольших затратах. И, что немаловажно, лучшие службы по обработке больших данных основаны прежде всего на инновационных идеях, а потому не обязательно требуют больших начальных инвестиций. Данные можно лицензировать, а не приобретать, проводить анализ на недорогих «облачных» платформах, а расходы на лицензирование покрывать за счет процента от получаемых доходов.
129
Brynjolfsson, Erik. Scale without Mass: Business Process Replication and Industry Dynamics / Erik Brynjolfsson, Andrew McAfee, Michael Sorell, and Feng Zhu // HBS working paper. — September 2006. URL:also http://hbswk.hbs.edu/item/5532.html.
Вполне
вероятно, что все это касается не только пользователей данных, но и держателей, которые могут добавить к своим запасам данных веские преимущества (ведь более существенную выгоду обеспечивает только добавочная себестоимость). Во-первых, у держателей данных уже есть инфраструктура для хранения и обработки информации. Во-вторых, объединение наборов данных придает им особое значение. И, наконец, наличие интернет-магазина для получения данных значительно упрощает жизнь пользователей. [130] Более того, может возникнуть радикально новый тип держателей данных — частные лица. Поскольку ценность данных становится все более очевидной, держатели информации, имеющей к ним отношение (включая данные об их покупательских вкусах, предпочитаемых СМИ, о состоянии здоровья и пр.), окажутся в выигрышном положении.130
О постепенном увеличении масштаба держателей данных, см. также: Bakos, Yannis. Bundling Information Goods: Pricing, Profits, and Efficiency / Yannis Bakos and Erik Brynjolfson // Management Science. — Dec. 1999. — Vol. 45. — P. 1613–1630.
И тогда потребители получат возможности, о которых и не мечтали. Отдельные лица смогут выбирать, кому лицензировать данные и на каких условиях. Конечно, кто-то начнет заламывать цены. А многие наверняка согласятся на повторное использование их данных бесплатно в обмен на лучшее обслуживание (например, точные рекомендации книг на сайте Amazon). Но для массы подкованных в цифровом плане пользователей идея маркетинга и продажи личной информации может стать столь же естественной, как ведение блога, публикация твитов или редактирование статей Википедии.
Для такого развития событий мало изменения взглядов и предпочтений пользователей. В настоящее время лицензирование личных данных было бы слишком трудоемким и дорогостоящим процессом и для пользователей, и для компаний с точки зрения заключения отдельных сделок с каждым из них. Скорее всего, появятся новые посредники, которые будут объединять данные многих пользователей и обеспечивать простой способ лицензирования данных, автоматизируя все операции. При достаточно низких затратах и доверии пользователей к таким посредникам, возможно, сформируется рынок личных данных, а частные лица станут успешными держателями данных. Такие группы, как ID3, одним из основателей которой является Сэнди Пентлэнд — гуру аналитики личных данных в MIT Media Lab, уже работают над тем, чтобы превратить эту фантазию в реальность.
Пока нет таких посредников и их первых клиентов, пользователи, желающие стать держателями собственных данных, имеют очень скромные возможности. А для того чтобы не утратить их, прежде чем появятся посредники и инфраструктура для преуспевания частных держателей данных, пользователям имеет смысл раскрывать как можно меньше информации.
Для средних компаний большие данные не имеют весомого значения. «Преимущество крупных компаний — в их масштабе, а малых и проворных — в их расходах и инновациях», — утверждает Филип Эванс из Boston Consulting Group, отличающийся прозорливостью в области технологий и бизнеса. [131] Средние компании в традиционных секторах выживают благодаря своему размеру, который обеспечивает преимущества масштаба, но при этом достаточно компактен, чтобы не утратить гибкости, которой нет у крупных игроков. В мире больших данных нет минимального масштаба, по достижении которого компании придется вкладывать средства в производственную инфраструктуру. Пользователи больших данных, которые хотят преуспевать, но при этом оставаться гибкими, обнаружат, что им больше не нужно достигать порогового размера — можно благополучно процветать и при небольшом (или стать частью гиганта в области больших данных).
131
Филип Эванс: интервью авторам (2011 и 2012 гг.).
Большие данные вытесняют средние компании отрасли, заставляя их изменить масштаб (стать крупнее или меньше, но проворнее) или свернуть работу. Многие традиционные секторы — от сферы финансовых услуг до производства фармацевтических препаратов — перейдут на использование больших данных. Это не приведет к исчезновению всех средних компаний во всех секторах, но, безусловно, окажет давление на компании в секторах, особенно склонных к внедрению анализа больших данных.
Большие данные коренным образом изменят конкурентные преимущества стран. В период изобилия инноваций, когда производство по большей части переместилось в развивающиеся страны, преимущество промышленно развитых стран состоит в том, что они располагают данными и знают, как их применить. Плохая новость: это преимущество не вечно. Когда остальные страны мира сумеют перенять эти технологии, как уже внедрили компьютерные вычисления и интернет, Запад утратит лидерство в области больших данных. Хорошая новость для энтузиастов из развитых стран: большие данные, скорее всего, усилят как сильные, так и слабые стороны компаний. Поэтому те, кто освоил работу с большими данными, смогут не только превзойти конкурентов, но и расширить сферу влияния.