Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:
Подобным образом большие данные окажут существенное влияние на то, как решения, принимаемые на их основе, будут дополнять или отклонять человеческие суждения. Эксперты в предметной области и основные специалисты утратят часть своего блеска на фоне специалистов по статистике и аналитиков данных, которые не держатся за устаревшие способы ведения дел и позволяют данным «говорить». Эти новые сотрудники будут полагаться на корреляции без предубеждений и предрассудков. Точно так же Мори не принимал за чистую монету все, что умудренные опытом капитаны рассказывали о морских путях за кружкой пива в пабе. Выявляя практические истины, он полагался на объединенные данные. Метод Мори не объяснял, откуда берутся ветры и течения, но для моряков, которые ищут безопасный путь, вопрос почему был менее важен, чем что и где.
Авторитет
Это означает, что навыки, необходимые для достижения успеха в работе, меняются, как и ожидания, возлагаемые на сотрудников организаций. Доктору Макгрегор, которая занимается проблемами недоношенных детей в Онтарио, не обязательно было становиться лучшим врачом в больнице или главным авторитетом в области наблюдения за беременными, чтобы добиться наилучших результатов в лечении своих пациентов. У нее даже нет медицинского образования, разве что степень доктора в области компьютерных наук. Но она поставила себе на службу данные о пациентах, собранные более чем за десятилетний период, которые обрабатываются компьютером, а затем с ее помощью преобразуются в рекомендации по лечению. [124]
124
Объем данных о пациентах, собранный Макгрегор более чем за десяток лет: из интервью Кукьеру (май 2012 года).
Первопроходцы, проявившие себя в сфере больших данных, нередко являются специалистами из других областей: анализа данных, искусственного интеллекта, математики или статистики, которые применяют свои навыки в определенных отраслях. По словам главного исполнительного директора Kaggle Энтони Голдблума, победители конкурсов Kaggle (интернет-платформы для проектов на основе больших данных) редко приходят из сектора, в котором достигли высоких результатов: призовое место занял британский физик, разработавший алгоритмы для прогнозирования претензий по страхованию и выявлению неисправных подержанных автомобилей. Сингапурский страховой статистик победил в конкурсе с проектом прогноза биологических реакций химических соединений. [125] Инженеры отдела по машинному переводу Google отмечают свой успех в переводах на языки, которых никто из них не знает, а специалисты по статистике из отдела машинного перевода Microsoft шутят, что качество переводов улучшается всякий раз, когда команду покидает лингвист.
125
Цитата Голдблума из интервью Кукьеру (март 2012 года).
Разумеется, эксперты в предметных областях не вымрут, но они наверняка утратят свое превосходство. Теперь им придется делить свои лавры со специалистами в области больших данных, а простые корреляции потеснят величие причинно-следственных связей. Это изменит наше отношение к знаниям, ведь мы склонны считать, что люди с узкой специализацией более ценны, чем с широкой: успех сопутствует более глубокому знанию предмета. Экспертные знания, как и точность, подходят для области «малых данных», где вечно не хватает нужной информации, поэтому в поисках правильного пути приходится полагаться на интуицию и опыт. В таких условиях опыт играет важнейшую роль, поскольку только длительное накопление скрытых знаний, которые нельзя передать, вычитать в книгах или даже попросту осознать, может помочь в принятии более взвешенных решений.
Но если у вас нет ничего, кроме данных, из них тоже можно извлечь огромную пользу. Те, кто проанализирует большие данные, увидят всю иррациональность традиционного мышления в прошлом не потому, что умнее, а потому, что имеют данные. (Кроме того, будучи посторонними наблюдателями, они позволят себе оставаться беспристрастными, в то время как эксперты предвзято отстаивают
позиции своей предметной области.) Это говорит о том, что ценность сотрудника для компании будет измеряться другими мерками. Изменятся знания, связи и навыки, необходимые для профессиональной деятельности.Знания в области математики, статистики и, возможно, общее представление о программировании и сетевой науке станут столь же неотъемлемыми требованиями к современным сотрудникам, какими были математическая грамотность столетие назад и общая грамотность в более раннюю эпоху. Ценность сотрудника начнет определяться не только тесными связями с коллегами и единомышленниками, но и широким кругом отношений с людьми целого ряда других профессий, чтобы знания могли циркулировать далеко за пределами исходных областей. Когда-то, чтобы быть превосходным биологом, нужно было знать множество других специалистов в этой сфере. В этом смысле не многое изменилось. Но теперь, когда большие данные приобрели большое влияние, важна не только глубина опыта в предметной области. Сложную биологическую задачу можно успешно решить и при помощи астрофизика или дизайнера в области визуализации данных.
Видеоигры — одна из отраслей, где «лейтенанты» больших данных уже пробили себе путь локтями, чтобы встать в ряд с «генералами» экспертных знаний, попутно преобразуя саму отрасль. Рыночный сектор видеоигр ежегодно получает 10 миллиардов долларов прибыли, что превышает кассовые сборы Голливуда. Раньше компания разрабатывала игру, выпускала ее на рынок и надеялась, что та станет хитом. На основе данных о продажах компания готовила продолжение или начинала новый проект. Решения относительно темпа и элементов игры (таких как персонажи, сюжет, объекты, события и пр.) зависели от творческой фантазии дизайнеров, которые относились к своей работе с такой же серьезностью, как Микеланджело расписывал Сикстинскую капеллу. Это было искусство, а не наука, мир догадок и интуиции, как у скаутов из фильма «Человек, который изменил всё».
Но эти времена прошли. FarmVille, FrontierVille, FishVille компании Zynga и другие онлайн-игры являются интерактивными. Очевидно, это позволяет Zynga просматривать данные об использовании игр и вносить изменения, руководствуясь реальным опытом игроков. Поэтому, если игроки с трудом переходят с одного уровня на другой или склонны забрасывать игру в определенный момент из-за скуки, специалисты Zynga заметят это по данным и предпримут соответствующие меры. Менее бросается в глаза то, что компания адаптирует игры под особенности отдельных игроков. Так что существует не одна версия FarmVille — их сотни.
Аналитики больших данных в компании изучают, как на увеличение продаж виртуальных товаров влияет их цвет или выбор друзей. Например, когда данные показали, что игроки FishVille покупают полупрозрачных рыб в шесть раз чаще, чем остальных существ, компания Zynga предложила дополнительные разновидности таких рыб и хорошо на этом заработала. В игре Mafia Wars обнаружилось, что игроки охотнее всего покупают оружие с золотой каймой и белоснежных домашних тигров. [126] Вряд ли разработчики игр, находящиеся в студии, узнали бы об этом сами. Это им подсказали данные. «Мы аналитическая компания, которая работает под видом игровой. Здесь всем заправляют числа», — говорит Кен Рудин, главный аналитик Zynga. [127]
126
Анализ данных в компании Zynga: Wingfield, Nick. Virtual Products, Real Profits: Players Spend on Zynga’s Games, but Quality Turns Some Off // Wall Street Journal. — September 9, 2011. URL: http://online.wsj.com/article/SB10001424053111904823804576502442835413446.html.
127
Цитата Рудин из Zynga: из интервью Рудин с Нико Вэше, цит. в статье: Simply Seven: Seven Ways to Create a Sustainable Internet Business / Erik Schlie, J"org Rheinboldt, NikoWaesche. — Palgrave Macmillan, 2011.
Происходит переход на решения, принимаемые на основе данных. Большинство людей приходят к решению, исходя из фактов, рассуждений и, пожалуй, во многом — догадок. «Буйство субъективных точек зрения возникает из ощущений в области солнечного сплетения», — говорится в памятных строках поэта Уистена Одена. Томас Дэвенпорт, бизнес-профессор в Бэбсон-колледже, Массачусетс, и автор многочисленных книг по аналитике, называет это явление «золотым нутром». Руководителям придает уверенность их внутреннее чутье, на которое они и полагаются. Но и здесь не обошлось без изменений: управленческие решения принимаются (или по крайней мере подтверждаются) прогнозным моделированием и анализом больших данных.