Брайан Грин. Ткань космоса: Пространство, время и структура реальности
Шрифт:
Все это можно проделать количественно, но главное в том, что эта траектория в точности совпадает с обращенным начальным движением мяча. Просто изменив на противоположную скорость мяча, как на Рис. 6.1с, – отправив его в путь с той же скоростью, но в противоположном направлении, – можно заставить его пройти полностью свою исходную траекторию, но назад. Возвращая пленку назад в обсуждение, мы видим, что выгнутая вверх траектория, направленная налево, – траектория, которую мы просто сконструировали, основываясь на ньютоновских законах движения, – в точности совпадает с тем, что мы видели при прокручивании пленки назад. Так что движение мяча с обращением времени, как изображено на прокручиваемой назад пленке, согласуется с законами физики так же надежно, как и его движение в прямом времени. Движение, которое мы видели, прокручивая пленку в обратном направлении, есть движение, которое на самом деле может происходить в реальном мире.
Хотя тут имеется несколько тонкостей, которые я отношу к заключительным комментариям [2] , это заключение является общим. Все известные и признанные законы, относящиеся к движению, – от уже обсужденной ньютоновской механики к электромагнитной теории Максвелла и к СТО и ОТО Эйнштейна (вспомним, что мы исключили квантовую механику до следующей главы) – заключают в себе симметрию по отношению к обращению времени: движение, которое может происходить в обычном направлении, соответствующем прямому ходу во времени, может так же прекрасно происходить и в обратном направлении. Поскольку терминология чуть-чуть запутанная, позвольте еще раз подчеркнуть, что мы не обращаем само время. Время действует так же, как и всегда. Вместо этого, наши выводы таковы, что мы можем направить объект очерчивать его траекторию в обратном направлении путем простой процедуры обращения его скорости в любой точке вдоль его пути. Эквивалентно, та же процедура – обращение скорости объекта в некоторой точке вдоль его пути заставит объект совершить движение, которое мы видели на прокручиваемой назад пленке.
2. Для склонного к математике читателя позвольте мне более точно отметить, что означает
В более общем смысле набор физических законов обеспечивает нас алгоритмом эволюции начального состояния физической системы в момент времени t0 к состоянию в некоторый другой момент времени t + t0. Конкретно, этот алгоритм может быть рассмотрен как отображение U(t), которое действует на начальное состояние S(t0) и производит S(t + t0), что означает S(t + t0) = U(t)S(t0). Мы говорим, что законы, приводящие к U(t), являются симметричными во времени, если имеется отображение T, удовлетворяющее соотношению U(–t) = T –1 U(t)T. На обычном языке это уравнение говорит, что при помощи подходящих манипуляций над состоянием физической системы в один момент (достигаемых с помощью T), эволюция на время t вперед во времени в соответствии с законами теории (выражаемой через U(t)) становится эквивалентной эволюции системы на t единиц времени назад во времени (обозначаемой U(–t)). Например, если мы определи состояние системы частиц в один момент через их положения и скорости, тогда T будет оставлять все положения частиц фиксированными и менять на противоположные все скорости. Эволюция такой конфигурации частиц вперед во времени на промежуток t эквивалентна эволюции оригинальной конфигурации частиц назад во времени на промежуток t. (Фактор T –1 отменяет обращение скоростей так, что в конце не только положения частиц совпадают с теми, которые они имели t единиц времени назад, но таковы будут и их скорости).
Для определенного набора законов оператор T более сложен, чем в случае ньютоновской механики. Например, если мы изучаем движение заряженных частиц в присутствии электромагнитного поля, обращение скоростей частиц будет не адекватно уравнениям, которые дадут эволюцию, в которой частицы заново проходят свои шаги. Вместо этого направление магнитного поля также должно быть обращено. (Это требуется, чтобы член v x B в уравнении для силы Лоренца остался неизменным). Таким образом, в этом случае операция T выполняет все эти преобразования. Тот факт, что мы проделываем больше, чем просто обращаем все скорости частиц, никак не влияет на обсуждение, которое следует дальше в тексте. Все, что имеет значение, это то, что движение частицы в одном направлении точно так же согласуется с законами физики, как и движение частицы в обратном направлении. То, что мы обращаем любые магнитные поля, которым случилось присутствовать, чтобы выполнить это, не имеет особого значения.
Ситуация становится более тонкой в случае слабых ядерных взаимодействий. Слабые взаимодействия описываются особой квантовой теорией поля (коротко обсужденной в Главе 9), и общая теорема показывает, что теории квантовых полей (при условии, что они локальны, унитарны и Лоренц-инвариантны, – что только и представляет интерес) всегда симметричны относительно объединенных операций сопряжения заряда С (которая заменяет частицы на их античастицы), четности P (которая переворачивает положения относительно исходных) и чистой операции обращения времени T (которая заменяет t на –t). Так что мы должны переопределить операцию T, заменив ее на операцию СРТ, но если Т– инвариантность безусловно требует, чтобы была введена операция СР, тогда Т больше не может быть просто интерпретирована как обратное прохождение частицами их шагов (поскольку, например, сама идентификация частиц будет изменена таким Т – частицы будут заменены на их античастицы, – а потому обратного прохождения оригинальными частицами их шагов быть не может). Как оказывается, имеются некоторые экзотические экспериментальные случаи, в которых мы попадаем в эту ситуацию. Имеются определенные виды частиц (К-мезоны, В-мезоны), чья манера поведения СРТ– инвариантна, но не инвариантна относительно одной операции обращения времени T. Это было установлено косвенно в 1964 Джеймсом Кронином, Валом Фитчем и их сотрудниками (за что Кронин и Фитч получили в 1980 Нобелевскую премию) через показ, что К-мезоны нарушают СР– симметрию (подразумевая, что они должны нарушать Т– симметрию, чтобы не нарушать СРТ– симметрию). Более недавно нарушение Т– симметрии было непосредственно установлено в эксперименте CPLEAR в ЦЕРНе и в эксперименте KTEV в Фермилабе. Грубо говоря, эти эксперименты показали, что если вы представили фильм с записью процессов, содержащих эти мезоны, вы будете в состоянии определить, проецируется ли этот фильм в правильном прямом направлении времени, или в обратном. Другими словами, эти особые частицы могут различать прошлое и будущее. Что остается неясным, однако, имеет ли это какое-нибудь отношение к стреле времени, которую мы ощущаем в повседневном контексте. Как-никак, это экзотические частицы, которые могут быть произведены на короткие моменты в высокоэнергетических столкновениях, но они не составляют привычные материальные объекты. Для многих физиков, включая меня, кажется маловероятным, что необратимость времени, проявляемая этими частицами, играет роль в ответе на загадку стрелы времени, так что мы не будем дальше обсуждать этот исключительный пример. Но правда в том, что никто не знает этого с уверенностью.
Теннисные мячи и разбивающиеся яйца
Наблюдение за теннисным мячом, запущенным между Венерой и Юпитером – в том или другом направлении – не является особенно интересным. Но поскольку заключение, которого мы достигли, широко применимо, отправимся теперь в некоторое более интересное место: на вашу кухню. Положите яйцо на ваш кухонный стол, катните его в направлении края и позвольте ему упасть на пол и разбиться. Несомненно, имеется много движений в этой последовательности событий. Яйцо падает. Скорлупа растрескивается. Желток расплескивается тут и там. Доски пола сотрясаются. Формируются вихри в окружающем воздухе. Трение вызывает нагревание, влияющее на атомы и молекулы яйца, пола и воздуха, заставляя их дрожать немного более быстро. Но точно так же, как законы физики показывают нам, как мы можем отправить теннисный мяч очерчивать его собственный точный путь в обратном направлении, те же самые законы показывают, как мы можем заставить каждый кусочек яичной скорлупы, каждую каплю желтка, каждую секцию настила пола и каждый пузырек воздуха также проделать в точности его движение в обратном направлении. "Все", что нам необходимо сделать, это поменять направление скорости всех и каждой из составляющих процесса разбивания на обратное. Более точно, рассуждения, использованные в примере с теннисным мячом, означают, что если, гипотетически, мы были бы в состоянии одновременно поменять на обратную скорость каждого атома и молекулы, вовлеченных прямо или косвенно в процесс разбивания яйца, все движения при разбивании яйца будут происходить в обратном направлении.
Еще раз, точно как с теннисным мячом, если мы преуспеем в обращении всех этих скоростей, то, что мы увидим, будет похоже на прокручиваемую в обратном направлении пленку. Но, в отличие от теннисного мяча, обращение движения разбивающегося яйца будет чрезвычайно впечатляющим. Волна колеблющихся молекул воздуха и мельчайшие сотрясения пола соберутся в месте падения со всех частей кухни, заставив каждый кусочек скорлупы и каплю желтка направиться обратно к месту удара. Каждый ингредиент будет двигаться в точности с той же скоростью, которую он имел в исходном процессе разбивания яйца, но каждый будет теперь двигаться в противоположном направлении. Капли желтка будут лететь назад в шарик, точно так же как зубцы маленьких кусочков скорлупы, достигнувших окраины шарика, будут полностью выстроены для соединения вместе в гладкий яйцевидный контейнер. Колебания пола и воздуха будут точно состыкованы с движениями мириад соединяющихся капель желтка и кусочков скорлупы, чтобы дать заново сформированное яйцо, которое одним толчком подпрыгнет с пола в виде одного куска, взлетит
на кухонный стол, мягко приземлится на его край с достаточным вращательным движением, чтобы откатиться на несколько дюймов и элегантно вернуться к началу. Это все будет происходить, если мы решим задачу тотального и точного обращения скоростей всего, что было задействовано. [3] Так что, является ли событие простым, вроде полета по дуге теннисного мяча, или чем-то более сложным, вроде разбивания яйца, законы физики показывают, что то, что происходит в одном направлении времени, может, по крайней мере, в принципе, также происходить и в обратном направлении.3. Я иногда нахожу, что имеется сильное нежелание согласиться с теоретическим утверждением, что кусочки яичной скорлупы могли бы на самом деле собраться назад вместе в изначальное, неиспорченное яйцо. Но симметрия законов физики по отношению к обращению времени, как было с большой подробностью рассмотрено в предыдущем комментарии, подразумевает, что это то, что могло бы случиться. На микроскопическом уровне разбивание яйца есть физический процесс, затрагивающий различные молекулы, из которых состоит скорлупа. Разбивание возникает и скорлупа растрескивается, поскольку группы молекул подвергаются силам, чтобы отделить их от компактного существования в яйце. Если эти движения молекул имели бы место в обратном направлении, молекулы бы объединились назад вместе, соединив скорлупу в первоначальную форму.
Принципы и практика
Истории о теннисном мяче и яйце дают более чем иллюстрацию симметрии по отношению к обращению времени в законах природы. Они также наводят на мысль, почему в действительном мире случая мы видим многие вещи происходящими одним способом и никогда не происходящими обратным способом. Отправить теннисный мяч повторить свой путь назад было не тяжело. Мы хватали его и неоднократно направляли его с той же самой скоростью, но в обратном направлении. Это так. Но заставить все хаотические остатки яйца воспроизвести их пути назад будет куда более тяжело. Мы должны захватить каждый кусочек разбитого яйца и одновременно направить каждый с той же скоростью, но в противоположном направлении. Ясно, что это находится за пределами того, что мы (или вся королевская конница и вся королевская рать) реально можем сделать.
Нашли ли мы ответ, который искали? Является ли причина того, почему яйца разбиваются, но не собираются воедино, даже если оба действия допускаются законами физики, вопросом того, что является, а что не является осуществимым на практике? Нет ли решения просто в том, что легко сделать яйцо разбитым – катнуть его по столу, – но экстраординарно сложно сделать его снова неразбитым?
Ну, если бы это был ответ, поверьте мне, я не стал бы возводить его в такую великую проблему. Спор простоты против сложности является существенной частью ответа, но полная история, в рамках которой все происходит, намного более тонкая и удивительная. Мы получим ее должным образом, но сначала мы должны сделать обсуждение этой секции чуть более точным. Это приводит нас к концепции энтропии.
Энтропия
На могильном камне на Центральном кладбище в Вене рядом с могилами Бетховена, Брамса, Шуберта и Штрауса выгравировано простое уравнение S = k log W, которое выражает математическую формулировку мощной концепции, известной как энтропия. Могильный камень несет на себе имя Людвига Больцмана, одного из наиболее проницательных физиков, работавших в течение последнего столетия. В 1906, с подорванным здоровьем и страдая от депрессии, Больцман совершил самоубийство во время отдыха со своей женой и дочерью с Италии. По иронии судьбы как раз несколькими месяцами позже эксперименты, начатые для подтверждения того, что идеи Больцмана, пылко отстаивая которые, он истощил свою жизнь, оказались успешными.
Понятие энтропии впервые было разработано во время промышленной революции учеными, интересовавшимися работой печей и паровых двигателей, что помогло разработать область термодинамики. После многих лет исследований основные идеи были резко пересмотрены, получив высшее воплощение в подходе Больцмана. Его версия энтропии, лаконично выраженная в уравнении на его надгробии, использует статистические обоснования для обеспечения связи между гигантским числом индивидуальных частей, составляющих физическую систему, и общими свойствами, которые система имеет. [4]
4. Чтобы удержать суть современного способа размышлений об этих идеях, я пропустил некоторую очень интересную историю. Собственные раздумья Больцмана по поводу энтропии проходили через существенные усовершенствования в течение 1870х и 1880х, во время которых полезными были взаимодействия и обмены информацией с такими физиками, как Джеймс Клерк Максвелл, лорд Кельвин, Джозеф Лошмидт, Джозайя Уиллард Гиббс, Анри Пуанкаре, С.Х. Бербери и Эрнест Цермело. Фактически, Больцман сначала думал, что он сможет доказать, что энтропия всегда и абсолютно будет не уменьшаться для изолированной физической системы, а не что просто очень маловероятно получить такое уменьшение энтропии. Но возражения, выдвинутые этими и другими физиками, постепенно привели Больцмана к выделению статистического/вероятностного подхода к этой теме, одного из тех, которые все еще используются сегодня.
Чтобы почувствовать эти идеи, представим себе копию Войны и мира, разделенную на 693 двусторонних отдельных листа, которые подброшены высоко в воздух, а затем их свободное скопление собрано в аккуратную стопку. [5] Когда вы проверите итоговый пакет страниц, в гигантской степени более вероятно, что страницы расположатся не по порядку, чем по порядку. Причина очевидна. Имеется много вариантов, в которых порядок страниц может быть перепутан, но только один вариант, при котором порядок правильный. Конечно, надлежащим образом страницы должны быть расположены в точности как 1,2; 3,4; 5,6; и так далее вплоть до 1385,1386. Любое другое расположение будет не по порядку. Простое, но существенное наблюдение заключается в том, что чем большим числом способов, которые все равноправны, нечто может произойти, тем более вероятно, что оно произойдет. А если нечто может произойти огромным числом способов, вроде страниц, приземлившихся в неправильном числовом порядке, в огромной степени более вероятно, что оно произойдет. Мы все интуитивно это знаем. Если вы покупаете лотерейный билет, имеется только один случай, в котором вы можете выиграть. Если вы купите миллион билетов, каждый со своим номером, то будет миллион случаев, в которых вы можете выиграть, так что ваши шансы разом разбогатеть будут в миллион раз выше.
5. Я представляю, что все мы используем издание Войны и Мира из Библиотеки Современной Классики (Modern Library Classics) в переводе на английский Констанции Гарнетт, содержащем 1 386 страниц текста.
Энтропия представляет собой понятие, которое делает эту идею точной путем подсчета количества способов, согласующихся с законами физики, в которых любая данная физическая ситуация может быть реализована. Высокая энтропия означает, что имеется много способов; низкая энтропия означает, что имеется несколько способов. Если страницы Войны и мира скомпоновались в правильном числовом порядке, это низкоэнтропийная конфигурация, поскольку имеется одно и только одно расположение, удовлетворяющее этому критерию. Если страницы находятся не в числовом порядке, это высокоэнтропийная ситуация, поскольку небольшой расчет показывает, что имеется огромное число, для записи которого потребовалось бы более 30 строк настоящего текста, – примерно 101878 – различных неупорядоченных расположений. [6] Если вы подбросили страницы в воздух, а затем собрали их в аккуратную стопку, всегда ясно, что они будут взбиты ветром беспорядочно, поскольку такие конфигурации имеют чудовищно более высокую энтропию – имеется намного больше способов получить неупорядоченный результат, – чем исключительное расположение, в котором страницы находятся в правильном числовом порядке.
6. Склонный к математике читатель должен заметить, что поскольку числа могут стать столь велики, энтропия на самом деле определяется как логарифм числа возможных перестановок, деталь, которая нас тут не касается. Однако, как принципиальный момент, это важно, поскольку очень удобно для энтропии быть так называемой экстенсивной величиной, что означает, что если вы объедините две системы вместе, энтропия их союза есть сумма их индивидуальных энтропий. Это остается правильным только для логарифмической формы энтропии, так как число перестановок в такой ситуации задается произведением индивидуальных перестановок, так что логарифм числа перестановок является аддитивным.
В принципе, вы можете использовать законы классической физики, чтобы точно определить, где приземлится каждая страница после того, как целая пачка была подброшена в воздух. Так же, опять в принципе, мы можем точно предсказать итоговое расположение страниц [7] и отсюда (в отличие от квантовой механики, которую мы игнорируем до следующей главы) будет казаться, что нет необходимости полагаться на вероятностные понятия, такие как какой результат является более или менее вероятным по сравнению с другим. Но статистические понятия являются как действенными, так и удобными. Если Война и мир была бы брошюрой, состоящей только из пары страниц, мы точно могли бы быть в состоянии успешно завершить необходимые вычисления, но это будет невозможно сделать для настоящей Войны и Мира. [8] Следование за точным движением 693 гибких кусков бумаги, пока они подхватываются тихими воздушными потоками и соприкасаются, скользят и хлопают друг о друга, будет монументальной задачей, далеко лежащей за пределами возможностей даже самых мощных суперкомпьютеров.
7. Поскольку мы можем, в принципе, предсказать, где приземлится каждая страница, вы можете озаботиться, что имеется дополнительный элемент, который определяет расположение страниц: как вы соберете страницы вместе в аккуратную пачку. Это не имеет отношения к обсуждаемой физике, но в случае, если вас это беспокоит, представьте, что вы согласились, что вы будете подбирать страницы одну за одной, начиная с той, которая к вам ближе всего, затем подберете ближайшую за этой страницу и так далее. (И, например, вы можете согласиться измерять расстояния от ближайшего угла страницы, о которой идет речь).
8. Надежда преуспеть в расчете движения даже нескольких страниц с точностью, требуемой для предсказания их (страниц) упорядочения (после применения некоторого алгоритма складывания их в кучу, такого как в предыдущем комментарии), на самом деле экстремально оптимистична. В зависимости от гибкости и веса бумаги такой сравнительно "простой" расчет может еще быть за пределами сегодняшних вычислительных возможностей.