Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Тем из вас, кто хочет испытать свою удаль на четырехмер­ных тензорах, может понравиться выражение для тензора Smvчерез поля:

где суммирование по a и b проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы S и символа d принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а dtt=+1, тогда как dxx.=dуу = dzz=-1 и dmv=0 для всех m№v (с=1). Сможете

ли вы доказать, что эта формула приводит к плотности энергии Stt=(e0/2)(E2+B2) и вектору Пойнтинга e0ЕXВ? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электриче­скому полю и вдоль направления поля возникает натяжение (e0/2)E2и равное ему давление в направлении, перпендикуляр­ном направлению поля?

* Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (e 0 /2)(E 2 2 B 2 ) или в единицах СИ 1 / 2 [e 0 E 2 +(l/m 0 )B 2 ]. — Прим. ред.

* Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p 0 постоянного дипольного момента p 0 в поле Е.

* Обычно для коэффициентов пропорциональности между Р и Е пользуются термином тензор восприимчивости, оставляя термин поля­ризуемость для величин, относящихся к одной частице. Прим. ред.

* В гл. 10, следуя общепринятому соглашению, мы писали Р=e 0 cЕ и величину c (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо e 0 c мы будем писать a. Для изо­тропного диэлектрика a=(c-1)e 0 , где c — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)

Глава 32

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА

§ 1. Поляризация вещества

§ 2. Уравнения Максвелла в диэлектрике

§ 3. Волны в диэлектрике

§ 4. Комплексный показатель преломления

§ 5. Показатель преломления смеси

§ 6. Волны в металлах

§ 7.Низкочастотное и высокочастотное приближение глубина скин-слоя и плазменная частота

Повторить: всё что в табл. 32.

§ 1. Поляризация вещества

Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плот­ным веществом. Теорию

показателя преломле­ния мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на по­казателе преломления веществ с малой плотно­стью наподобие газов. Но физические принципы, приводящие к возникновению показателя пре­ломления, мы там все же выяснили. Электри­ческое поле световой волны поляризует мо­лекулы газа, создавая тем самым осцилли­рующие дипольные моменты, а ускорение ос­циллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерфери­руя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эф­фект в целом оказывается эквивалентным из­менению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникаю­щими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действую­щие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эф­фект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.

Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломле­ния (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я соби­раюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах, а сразу же буду браться за уравнения.

Таблица 32.1 · ЧТО БУДЕТ ИСПОЛЬЗОВАНО В ЭТОЙ ГЛАВЕ

Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится N ча­стиц и каждая из них ведет себя как гармонический осциллятор. Мы пользуемся моделью атома или молекулы, к которой элект­рон привязан силой, пропорциональной его перемещению (как будто он удерживается пружинкой). Отметим, что такая модель атома с классической точки зрения незаконна, однако позднее будет показано, что правильная квантовомеханическая теория дает (в простейших случаях) эквивалентный результат. В наших прежних рассмотрениях мы не учитывали «тормозящей» силы в атомном осцилляторе, а сейчас это будет сделано. Такая сила соответствует сопротивлению при движении, т. е. она пропор­циональна скорости электрона. Уравнением движения при этом будет

F=qeE =m(x+gx+w20x), (32.1)

где х — перемещение, параллельное направлению поля Е. (Осциллятор предполагается изотропным, т. е. восстанавли­вающая сила одинакова во всех направлениях. Кроме того, на время мы ограничимся линейно поляризованной волной, так что поле Е не меняет своего направления.) Если действую­щее на атом электрическое поле изменяется со временем сину­соидально, то мы пишем.

E=E0eiwt. (32.2)

С той же самой частотой будет осциллировать и перемещение, поэтому можно считать

х=х 0 е i w t .

Подставляя х=iwх и х=-w2х, можно выразить х через Е:

А зная перемещение, можно вычислить ускорение х и найти от­ветственную за преломление излученную волну. Именно таким способом в гл. 31 (вып. 3) мы подсчитывали показатель пре­ломления.

Теперь же мы пойдем другим путем. Индуцированный дипольный момент атома р равен qex, или в силу уравнения (32.3)

Поделиться с друзьями: