Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
где d — это то расстояние, на котором амплитуда волны уменьшается в е=2,72 раза, т. е. приблизительно в 3 раза. Амплитуда такой волны, как функция от z, показана на фиг. 32.3.
Фиг. 32.3. Амплитуда поперечной электромагнитной волны в металле как функция расстояния.
Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина d называется глубиной скин-слоя и определяется выражением
Но что все-таки
w<<1/t
и
w<<s/e0. (32.49)
Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления t воспользуемся уравнением (32.43), а для вычисления s/e0 — известными значениями s и e0. Справочник дает нам такие данные:
s=5,76·107 (ом·м)– 1,
Атомный вес = 63,5 г,
Плотность = 8,9 г/см3,
Число Авогадро=6,02·1023.
Если мы предположим, что на каждый атом приходится по одному свободному электрону, то число электронов в кубическом метре будет равно
N=8,5·1028 м– 3.
Используя далее
qe=1,6·10– 19 кулон,
e0=8,85·10– 12 ф/м,
m=9,11·10– 31 кг,
получаем
t=2,4·10– 14 сек,
1/t=4,l·1013 сек– 1,
s/e0 = 6,5·1018 сек– 1.
Таким образом, для частот, меньших чем приблизительно 1012 гц, медь будет иметь описанное нами «низкочастотное» поведение. (Это будут волны с длиной, большей 0,3 мм, т. е. очень короткие радиоволны!)
Для таких волн глубина скин-слоя равна
Для микроволн с частотой 10 000 Мгц (3-сантиметровые волны)
s=6,7·10– 4 см,
т. е. волны проникают на очень малое расстояние.
Теперь вы видите, почему при изучении полостей (и волноводов) нам нужно беспокоиться только о полях внутри полости, а не о волнах в металле или вне полости. Кроме того, мы видим, почему серебрение или золочение полости уменьшает потери в ней. Ведь потери происходят благодаря токам, которые ощутимы только в тонком слое, равном глубине скин-слоя.
Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот сот много больше единицы, и уравнение (32.42) очень хорошо аппроксимируется следующим:
Для высокочастотных волн показатель преломления в металлах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с 7, что может быть сделано при очень больших значениях w. Выражение (32.38)
дает при этом
что, разумеется, эквивалентно уравнению (32.50). Раньше нам
уже встречалась величина (Nq2e/e0m)1/2, которую мы назвали
плазменной частотой (см. гл. 7, § 3, вып. 5);
Таким образом, (32.50) или (32.51) можно переписать в виде
Эта плазменная частота является своего рода «критической». Для w<wр показатель преломления металла имеет мнимую часть и происходит поглощение волн, но при w>>wp показатель становится вещественным, а металл — прозрачным. Вы знаете, конечно, что металлы в достаточной мере прозрачны для рентгеновских лучей. Но некоторые металлы прозрачны даже для ультрафиолета. В табл. 32.3 мы приводим для некоторых металлов экспериментально наблюдаемые длины волн, при которых эти металлы начинают становиться прозрачными. Во второй колонке дана вычисленная критическая длина волны lp =2pc/wp . Учитывая, что экспериментальная длина волны определена не очень хорошо, согласие с теорией следует признать замечательным.
Таблица 32.3 · длины волн, при которых МЕТАЛЛ СТАНОВИТСЯ ПРОЗРАЧНЫМ
Вас может удивить, почему плазменная частота wр должна иметь отношение к распространению волн в металлах. Плазменная частота появилась у нас в гл. 7 (вып. 5) как собственная частота колебаний плотности свободных электронов. (Электрическое расталкивание группы электронов и их инерция приводят к колебаниям плотности.) Продольные волны плазмы резонируют при частоте w. Но сейчас мы говорим о поперечных волнах, и мы уже нашли, что при частотах, меньших wр, происходит их поглощение. (Это очень интересное и отнюдь не случайное совпадение.)
Хотя мы все время говорили о распространении волн в металлах, вы одновременно, должно быть, почувствовали универсальность явлений физики: нет никакой разницы в том, находятся ли свободные электроны в металле, в плазме, в ионосфере Земли или в атмосфере звезд. Чтобы понять распространение радиоволн в ионосфере, можно воспользоваться тем же выражением, разумеется, при надлежащих значениях величин N и t. Теперь мы можем видеть, почему длинные радиоволны поглощаются или отражаются ионосферой, тогда как короткие свободно проходят через нее. (Поэтому для связи с искусственными спутниками Земли должны применяться короткие волны.)
Мы говорили о распространении предельных высоко- и низкочастотных волн в металлах. Для промежуточных же частот необходимо использовать «полновесное» уравнение (32.42). В общем случае показатель преломления будет иметь вещественную и мнимую части, и при распространении волн в металлах происходит их поглощение. Очень тонкие слои металла прозрачны даже для обычных оптических частот. В качестве примера приведем специальные защитные очки для рабочих, работающих около высокотемпературных печей. Эти очки изготавливаются напылением на стекло очень тонкого слоя золота; стекло это достаточно прозрачно для видимого света и на просвет выглядит как зеленое, но инфракрасные лучи сильно поглощает.