Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
Мы будем обозначать через и вектор перемещения из точки Р в точку Р', т. е.
u = r'-r. (39.1)
Перемещение и зависит, конечно, от точки Р, из которой оно выходит так, что и есть векторная функция от г или от (х, у, z).
Сначала рассмотрим простейший случай, когда деформация по всему материалу постоянна, т. е. то, что называется однородной деформацией. Предположим, например, что мы взяли балку из какого-то материала и равномерно ее растянули. Иначе говоря, мы просто равномерно изменили ее размер в одном направлении, скажем в направлении оси х (фиг. 39.2).
Фиг. 39.2.
Перемещение uxпятнышка с координатой х пропорционально самому х.
Действительно,
Мы будем записывать uxследующим образом:
и x =е хх х.
Разумеется, константа пропорциональности ехх— это то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)
Если же деформация неоднородна, то связь между х и uxв материале будет изменяться от точки к точке. В таком общем случае мы определим еххкак своего рода локальную величину Dl/l, т. е.
Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами
Кроме того, нам нужно описать деформации типа сдвигов. Вообразите, что в первоначально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).
Фиг. 39.3. Однородная деформация сдвига.
При такой деформации перемещение в направлении х каждой частицы пропорционально ее координате у:
а перемещение в направлении у пропорционально х:
uy=(q/2)x. (39.5)
Таким образом, деформацию сдвигового типа можно описать с помощью
ux=exyy uу=eyxx,
где
Теперь вы сочтете, что при неоднородной деформации обобщенную деформацию сдвига можно описать, определив величины еxyи еyxследующим образом:
Однако здесь есть некая трудность. Предположим, что перемещения uхи uyимеют вид
Они
напоминают уравнения (39.4) и (39.5), за исключением того, что при uyстоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).
Фиг. 39.4. Однородный поворот. Никаких деформаций нет.
Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное положение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше определение деформации сдвига. Указанием может послужить то, что если дuy/дх и дux/ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив
Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, еху=еуx.
В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:
Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, ехувсегда равно еух), то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тензоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — векторы, то Сij=АiВj — тензор.) А каждое наше eijесть произведение (или сумма таких произведений) компонент вектора
u=(uх, uу, uz) и оператора С=(д/дx,д/дy,д/дz), который, как
мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x1, x2и x3, а вместо uх, uyи uгписать u1, u2 и u3; тогда общий вид элемента тензора eijбудет выглядеть так: