Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:

Что же означает состояние (16.19) физически? Один из вы­водов таков: если мы наблюдаем пару фотонов при помощи двух детекторов, которые могут порознь считать число левых или число правых фотонов, то мы всегда будем видеть одновре­менно либо пару правых, либо пару левых фотонов. Иначе го­воря, если вы встанете по одну сторону позитрония, а ваш прия­тель по другую, то вы сможете, измеряя поляризацию, сказать вашему приятелю, какая поляризация у него получилась. С ве­роятностью 50% вы будете ловить то левый, то правый фотон; что вы поймаете, то и предсказывайте.

Раз левая и правая поляризации встречаются поровну, то все это сильно смахивает на линейную поляризацию. Спросим себя, что будет, если наблюдать фотон с помощью счетчиков, которые воспринимают только линейно поляризованный свет? Поляризацию g-квантов измерять не так легко, как поляриза­цию света; нет таких поляризаторов, которые на столь коротких волнах хорошо работают. Но вообразим, чтобы облегчить об­суждение, что такое бывает.

Пусть имеется счетчик, который воспринимает только x– поляризованный свет, а по ту сторону позитрония стоит кто-то, кто тоже наблюдает линейно поляри­зованный свет, но только, скажем, y– поляризованный. Каков шанс, что вы оба одновременно заметите фотоны от аннигиля­ции? Нужно найти амплитуду того, что |F>будет в состоянии 1y2>. Иными словами, мы ищем амплитуду

<х1y2|F>,

которая, конечно, равна просто разности

Далее, хотя нам сейчас нужны двухчастичные амплитуды для двух фотонов, с ними здесь можно обращаться так же, как с амплитудами для отдельных частиц, ведь каждая частица действует независимо от другой. Это значит, что амплитуда <x1y2|R1R2> попросту равна произведению двух независимых амплитуд <x1|R1> и <y2|R2>. Эти амплитуды (см. табл. 15.3, стр. 130) равны 1/Ц2 и i/Ц2, так что

Аналогично,

Вычитая их, как сказано в (16.21), получаем

Значит, если вы заметите в своем x– поляризованном детекторе фотон, то ваш приятель с вероятностью единица тоже заметит фотон в своем y– поляризованном детекторе.

Теперь предположим, что ваш приятель настраивает свой счетчик на ту же х– поляризацию, что и вы. Тогда он ни за что не получит отсчета одновременно с вами. Подсчитав все, что надо, вы найдете, что

Естественно, если вы настроите свой счетчик на y– поляризацию, то ваш приятель будет получать совпадающие отсчеты только тогда, когда он сам настроится на z-поляризацию.

Все это создает интересное положение. Представьте, что вы взяли кусок известкового шпата, который разделяет фотоны на х- и y– поляризованные пучки, и в каждом пучке поставили по счетчику. Назовем один из них x– счетчик, другой — y– счетчик. Если ваш приятель, стоящий по другую сторону, сделает то же самое, вы всегда сможете его предупредить, в каком пучке со­бирается пройти его фотон. Всякий раз, как у вас и у него полу­чаются одновременные отсчеты, вы можете посмотреть, в какой из ваших детекторов попал фотон, и дать ему знать, какой из его счетчиков поймал фотон. Пусть, скажем, в некотором распаде вы обнаружите, что фотон вошел в ваш x– счетчик; тогда вы крик­нете ему, что в его y– счетчике произошел отсчет.

Многих людей, изучающих квантовую механику обычным (старомодным) способом, это обстоятельство очень волнует. Им хотелось бы считать, что когда фотон излучается, то он движется как волна определенного характера. Они хотели бы думать, что поскольку «каждый данный фотон» обладает некото­рой «амплитудой» того, что он окажется х- или y

поляризованным, то должен быть определенный шанс поймать его либо в х- , либо в y– счетчике, и что этот шанс не должен зависеть от того, что обнаруживает другой человек у совершенно другого фотона. Они доказывают, что «если кто-то другой делает измерения, он не должен быть в состоянии изменить вероятность того, что я обнаружу». Наша квантовая механика утверждает, однако, что, делая измерения над фотоном № 1, вы в состоянии пред­сказать точно, какая собирается быть поляризация у фотона № 2. С этим никак не мог согласиться Эйнштейн. Этот парадокс, так называемый «парадокс Эйнштейна — Подольского — Розена», его очень беспокоил. Но если описать положение вещей так, как это было сделано у нас, то вообще нет никакого парадокса; вполне естественно получается, что то, что измеряется в одном месте, коррелировано с тем, что измеряется где-то в дру­гом. Рассуждать, чтобы результат стал парадоксальным, надо примерно так:

1) Если у вас есть счетчик, который сообщает вам, какой ваш фотон — правый или левый, то вы можете точно предсказать сорт фотона (правый или левый), который обнаружит ваш при­ятель.

2) Каждый фотон, который он принимает, должен поэтому быть либо чисто левым, либо чисто правым, причем часть фото­нов будет одного сорта, а часть другого.

3) Вы бесспорно не в состоянии переменить физическую при­роду его фотонов, меняя характер тех наблюдений, которые вы совершаете над вашими фотонами. Какие бы вы измерения ни проделывали над своими фотонами, его фотоны по-прежнему должны быть либо правыми, либо левыми.

4) Допустим, что он меняет свой аппарат так, чтобы расще­пить свои фотоны при помощи куска известкового шпата на два линейно поляризованных пучка, так что все его фотоны перейдут либо в x– поляризованный, либо в y– поляризованный пучок. Согласно квантовой механике, нет никакого способа сообщить, в какой из пучков перейдет заданный правый фотон. Есть 50%-ная вероятность, что он пойдет в x– пучок, и 50%-ная вероятность, что в y– пучок. То же будет и с левым фотоном.

5) Поскольку каждый фотон является либо левым, либо правым (согласно пунктам 2 и 3), то каждый из них должен с 50%-ной вероятностью перейти либо в x– пучок, либо в y– пучок, и невозможно предсказать, какой путь он выберет.

6) А теория предсказывает, что если вы заметили, что ваш фо­тон прошел через x– поляризатор, то вы со всей определенностью можете предсказать, что его фотон пройдет в его y– поляризованном пучке. Это противоречит пункту 5, так что налицо пара­докс.

Но природа, по всей видимости, не замечает этого «пара­докса», потому что опыт свидетельствует о том, что предсказание пункта 6 в действительности верно. Мы уже обсуждали ключ к решению этого «парадокса» в нашей самой первой лекции по квантовомеханическому поведению [см. гл. 37 (вып. 3)]. В при­веденном выше рассуждении пункты 1, 2, 4 и 6 все правильны, а пункт 3 и, как следствие этого, пункт 5 — ошибочны; они не являются правильным описанием природы. Рассуждение в пункте 3 говорит, что с помощью вашего измерения (наблюдения правого или левого фотона) вы можете определить, какое из двух взаимоисключающих событий произойдет у него (увидит ли он правый фотон или левый), и что даже если вы не проде­лаете своих измерений, вы все равно сможете сказать, что у него произойдет либо одно событие, либо другое. В этом и состоит суть рассказанного в гл. 37 (вып. 3) — подчеркнуть сразу, с са­мого начала, что в Природе дело обстоит совсем не так. Ее путь требует описания на языке интерферирующих амплитуд, по одной амплитуде для каждого события, исключающего другие события. Измерение, в котором действительно реализуется одна из возможностей, разрушает интерференцию, но если измерение проделано не было, вы не вправе говорить, что все равно реали­зуется либо одна возможность, либо другая».

Вот если бы вы могли определить для каждого из ваших фо­тонов, какой он — правый или левый и, кроме того, являет­ся ли он x– поляризованным (все для одного и того же фотона), то это действительно было бы парадоксом. Но этого вы не сможете сделать — перед вами пример принципа неопределенности.

Если вы все еще не удовлетворены и считаете это «парадок­сом», то покажите, что это действительно парадокс: придумайте такой воображаемый опыт, для которого теория квантовой ме­ханики двумя различными рассуждениями предсказывала бы два несогласующихся результата. В противном случае «пара­докс» — это всего лишь конфликт между тем, что есть на самом деле, и вашим ощущением того, какой «полагалось бы быть» реальной природе.

Поделиться с друзьями: