Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по гравитации
Шрифт:

Совершенно другой подход к выводу формы гравитационного взаимодействия был разработан Вейнбергом [Wein 64а, Wein 64b]. Сделав весьма разумные предположения об аналитических свойствах амплитуд рассеяния при гравитон-гравитон взаимодействии, Вейнберг показал, что теория взаимодействующей безмассовой частицы со спином 2 может быть лоренц-инвариантной, только если частицы взаимодействуют с материей (включая взаимодействие с самой собой) с некоторой универсальной силой, другими словами, только если удовлетворяется сильный принцип эквивалентности. До известной степени аргументация Вейнберга - наиболее глубокая и мощная, так как свойство того, как гравитон взаимодействует с тензором энергии-импульса, выводится из других более общих принципов. Как только принцип эквивалентности установлен, можно продолжить построение эйнштейновской теории [Wein 72].

Наконец, существует вопрос о том, как должны быть исключены члены в лагранжиане, включающие в себя производные выше второго порядка от тензора h. В лекциях Фейнмана этому вопросу уделено очень мало внимания, за исключением

замечания в разделе 6.2, что включение членов с двумя производными (или менее) приведёт к ”наипростейшей” теории. (См. также в разделе 10.3 связанное с этим замечание в слегка другом контексте.) Фейнман, по-видимому, не предвосхитил современную точку зрения [Wein 79], что члены с более высокими производными обязательно присутствуют в лагранжиане, но эти члены оказывают пренебрежимо малое влияние на предсказания теории, когда кривизна пространства-времени мала. Философия, лежащая в основе этой точки зрения, состоит в том, что лагранжиан эйнштейновской теории является просто ”эффективным лагранжианом”, который описывает низко-энергетическую феноменологию более фундаментальной теории - теории, которая могла бы включать в себя новые степени свободы (суперструны?) на масштабах длины порядка планковской длины LP=(Gh/a^2) 1/2 10– 33 см. В эффективном лагранжиане допускаются все члены, согласованные с общими принципами, включая члены с произвольным числом производных. Тем не менее, основываясь на соображениях размерности, член с более высокими производными имеет коэффициент, пропорциональный более высокой степени LP. Таким образом, в процессе, включающем в себя характерный радиус кривизны порядка L, члены в лагранжиане с четырьмя производными дают эффекты, которые подавлены по сравнению с эффектами, вызываемыми членами со второй производной, подавлены множителем порядка (Lp/L)2, который чрезвычайно мал для любых разумных процессов. В таком случае мы можем понять, почему усечённая теория, включающая только члены со второй производной и ниже, была бы в замечательном согласии с экспериментом.

С другой стороны, то же самое рассуждение также приводит к ожиданию появления ”космологического” члена (в котором нет производных) с коэффициентом порядка 1 в единицах LP. То, что космологическая постоянная является фактически необычайно малой сравнительно с такими наивными ожиданиями, остаётся одной из великих неразрешённых тайн физики гравитации [Wein 89].

Геометрия

После проведения исследований в целях построения разумной теории, которая описывает взаимодействия безмассовых полей спина 2 в плоском пространстве, Фейнман не отказался от того, чтобы высказать восхищение (как в разделе 8.4), что получившаяся в результате теория имеет геометрическую интерпретацию: ”… этот факт состоит в том, что поле спина 2 имеет геометрическую интерпретацию; это не является чем-то легко объяснимым, это является просто удивительным.” В лекциях 8-10 при развитии теории используется геометрический язык, который является более традиционным, чем тот подход, который использовался в его более ранних лекциях.

В разделе 9.3 Фейнман замечает, что он не знает геометрической интерпретации тождества Бианки, и он кратко описывает, как можно было бы обнаружить этот геометрический смысл. Геометрическая интерпретация, которую он представляет, была в явном виде описана в работе французского математика Эли Картана в 1928 году [Cart 28]; тем не менее, она была неизвестна широким кругам физиков, даже кругам профессиональных релятивистов в 1962 году. Эта геометрическая интерпретация была высказана на языке дифференциальных форм, на котором Фейнман не говорил. Интерпретация Картана состояла в том, что ”граница границы равна нулю”, как было в конце концов извлечено из идей Картана Чарльзом Мизнером и Джоном Уилером в 1971 году, что сделало эту интерпретацию широко доступной; см. например, часть 15 монографии [MTW 73] на техническом уровне и часть 7 книги [Whee 90] на популярном уровне.

Космология

Некоторые из идей Фейнмана о космологии имеют современное звучание. Хороший пример - это его внимание к вопросу о происхождении материи. Идея о непрерывном образовании вещества в стационарной космологической модели серьёзно не раздражает его (он замечает в разделе 12.2, что в космологии Большого Взрыва существует проблема (причём довольно неприятная), как объяснить, откуда берётся вся материя в самом начале). В разделе 1.2 и вновь в разделе 13.3 он подчёркивает, что полная энергия вселенной могла бы быть в действительности равной нулю, и что образование вещества возможно, поскольку энергия покоя вещества на самом деле сокращается энергией гравитационного потенциала. ”Дух захватывает от мысли о том, что ничего не стоит образовать новую частицу…”. Это близко к популярному взгляду на то, что вселенная есть ”бесплатный обед”, ничто или почти ничто взрывается до космологического размера, проходя через чудо инфляции [Guth 81]. Фейнман беспокоился более о необходимости несохранения барионного числа, если вселенная возникает из ”ничего”.

Фейнман также выразил предпочтение для ”критического” значения плотности в разделе 13.1, и этот предрассудок довольно широко распространён сейчас [LiBr 90]. В разделе 13.2 он дал интересный (и качественно правильный) аргумент в поддержку того, что плотность близка к критической: он замечает, что существование скоплений и сверхскоплений

галактик приводит к тому, что ”гравитационная энергия того же самого порядка, что и кинетическая энергия расширения, это позволяет мне предположить, что средняя плотность должна быть очень близка к критической плотности всюду.” В 1962 году это был довольно непривычный аргумент.

Очевидно, что уже в начале 60-х годов Фейнман признал необходимость новых фундаментальных принципов физики, которые могли бы обеспечить нас предварительным описанием начальных условий вселенной. В начале этих лекций, в разделе 2.1, он отклоняется на обсуждение оснований статистической механики, чтобы выразить убеждение в том, что второй закон термодинамики должен иметь космологическое происхождение. Отметим его утверждение ”…вопрос состоит в том, как в квантовой механике описать ту идею, что состояние вселенной в прошлом было чем-то особенным.” (Подобная интуитивная догадка также появилась в книгах ”Фейнмановскиелекции по физике” [Feyn 63а] и ”Характер физических законов” [Feyn 67], которые были датированы тем же самым периодом.) Таким образом, по-видимому, Фейнман предвидел то увлечение квантовой космологией, которое начало овладевать вниманием значительной части физического сообщества около двадцати лет назад. Он также выражает в разделах 1.4 и 2.1 неприемлемость копенгагенской интерпретации квантовой механики в космологическом контексте.

Сверхзвёзды

В 1962 - 63 годах, когда Фейнман читал свои лекции по гравитации, КАЛТЕХ был взволнован новыми открытиями ”сильных радиоисточников”.

В течение 30 лет астрономы были озадачены выяснением природы этих наиболее сильных из всех объектов, излучающих в радиодиапазоне. В 1951 году Уолтер Бааде [Baad 52] использовал новый оптический 200-дюймовый телескоп КАЛТЕХ’a на горе Паломар для того, чтобы открыть наиболее яркий из радиоисточников - Лебедь A (Cygnus А), который не являлся (как это ожидали астрономы) звездой в нашей собственной Галактике, но был связан с некоторой особенной, довольно удалённой галактикой. Двумя годами позже Р.К.Дженнисон и М.К.Дас Гупта [JeDG 53], изучая источник Лебедь А с помощью нового радиоинтерферометра в Джодрелл Бенк, Англия, открыли, что большая часть радиоволн приходит не от внутренней части галактики, а от двух гигантских полостей, расположенных с противоположных сторон от галактики, которые имеют размер около 200 000 световых лет и около 200 000 световых лет между этими полостями. Радиоинтерферометр КАЛТЕХ’а, расположенный в ущелье Оуэнса, вошёл в строй в конце 50-х годов, и в 1962-63 годах, времени чтения лекций Фейнмана, этот интерферометр использовался совместно с оптическим 200-дюймовым телескопом на горе Паломар для того, чтобы идентифицировать многие другие радиоисточники с двойными полостями. Некоторые, как и Лебедь А, размещены в центре галактик; другие объекты размещены на звездоподобных точечных источниках света (которые, как обнаружил 5 февраля 1963 сотрудник КАЛТЕХ’а Мартин Шмидт, имеют гигантские значения красного смещения [Schm 63], а позже в том же году Хонг Йи Чиу, назвал эти объекты квазарами). В 1962 году и в начале 1963 года, тогда как астрономы КАЛТЕХ’а соревновались друг с другом для того, чтобы провести новые и лучшие наблюдения этих странных объектов и проинтерпретировать их спектры, астрофизики соревновались в построении моделей этих объектов.1

1 Для ознакомления с дальнейшими историческими деталями, см., например, часть 9 [Thor 94] и ссылки в этой книге.

Одна особенно многообещающая модель была представлена летом 1962 года сотрудником Кембриджа Фредом Хойлом и сотрудником КАЛТЕХ’а Уильямом Фаулером [HoFo 63]. В рамках этой модели предполагается, что мощность для каждого сильного радиоисточника приходит от сверхмассивной звезды в центре галактики. Громадная величина энергии радиополостей (оценённая Джеоффри Бербиджем как 1058– 1060 эрг, т.е. эквивалент энергии 104– 106 солнечных масс) требует, чтобы эта система управлялась бы сверхмассивной звездой, имеющей массу ~ 106– 109 солнечных масс. По сравнению с верхним пределом массы нормальных звёзд, равным ~ 100 солнечных масс, эти объекты Хойла - Фаулера были на самом деле ”сверхмассивными.” Эти объекты стали называться в некоторых кругах сверхзвёздами.

Где-то в начале 1963 года (вероятно в феврале или марте) Фред Хойл делал доклад на семинаре (SINS)1 в Лаборатории излучения (Лаборатории Келлога) КАЛТЕХ’а о модели сверхзвезды для сильных радиоисточников. Во время, когда задавали вопросы, Ричард Фейнман высказал возражение о том, что эффекты общей теории относительности должны были бы делать все сверхзвёзды неустойчивыми, по крайней мере, в том случае, если они невращающиеся. Они должны были бы коллапсировать для того, чтобы образовать то, что в настоящее время называется чёрными дырами.

1 ”Stellax Interiors and Nucleosynthesis” - ”внутреннее строение звёзд и нуклеосинтез” - серия семинаров, которые организовал и проводил Фаулер.

Хойл и Фаулер находились в сомнении, но в течение нескольких месяцев они и независимо от них Ико Ибен [Iben 63] (старший научный сотрудник в Лаборатории Келлога, в которой работал Фаулер) проверили и убедились в том, что Фейнман наиболее вероятно был прав. С. Чандрасекар из Чикагского Университета независимо открыл неустойчивость в рамках общей теории относительности и вполне определённым образом проанализировал эту неустойчивость.

Поделиться с друзьями: