Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по гравитации
Шрифт:

По словам Хойла и Фаулера замечание Фейнмана было ”громом среди ясного неба”, полностью неожиданным и не имело видимого основания, за исключением изумительной физической интуиции Фейнмана. На Фаулера это произвело такое впечатление, что он описывал этот семинар и интуитивную догадку Фейнмана многим коллегам по всему миру, добавляя, тем самым, ещё одну (правдивую) историю к легенде Фейнмана.

На самом деле интуиция Фейнмана не возникала без труда. Здесь, как и где-нибудь в другом месте, эта интуиция основывалась на огромном объёме детальных вычислений, проводимых из-за любознательности Фейнмана. И в этом случае, в отличие от других, Фейнман оставил нам моментальный снимок его напряжённой работы, в результате которой им было сделано открытие: это лекция 14 в этом томе.

Мы собрали вместе обстоятельства, окружающие лекцию 14, главным образом основываясь на записках января 1963 года Ико Ибена и на его воспоминаниях, кроме того, на беседе между Фейнманом и Торном, произошедшей где-то в районе 1971 года, и фрагментах воспоминаний Джеймса Бардина, Стивена Фраучи, Джеймса Хартля и Уильяма Фаулера.

Где-то в конце 1962 года или в начале января 1963 года Фейнману должно было придти в голову, что на сверхзвёзды Хойла - Фаулера должны были бы оказывать

сильное влияние силы общей теории относительности. Согласно запискам Ибена, Фейнман пришёл в его комнату в Лаборатории Келлога где-то до 18 января, поднял вопрос о том, как влияет общая теория относительности на сверхзвёзды, показал Ибену уравнения общей теории относительности, которые описывают структуру сверхзвезды и которые Фейнман выписал для самого себя, исходя из первых принципов, и спросил о том, как астрофизики, такие как Ибен, действуют при построении ньютоновских звёздных моделей из аналогичных ньютоновских уравнений. После этого обсуждения, Фейнман ушёл и вернулся где-то на неделе (21 - 25 января). "Фейнман ошарашил меня”, вспоминал Ибен, ”тем, что он пришёл и сказал мне, что он [уже] решил … уравнения. Он сказал мне, что он провёл некоторые консультации с компьютерной фирмой и решил эти уравнения в реальное время, как это должно было бы быть сделано на поколении компьютеров типа рабочей станции”.

В понедельник 28 января, имея только несколько дней для того, чтобы обдумать численные решения (и, предположительно, затратив достаточно много времени на различные другие дела, так как он должен был готовить лекцию для второкурсников в тот же самый понедельник), Фейнман прочитал лекцию 14 из этой книги. (Заметим, что это было всего за восемь дней до открытия Мартином Шмидтом красных смещений квазаров.)

Лекция 14 пришлась на середину усилий Фейнмана, направленных на то, чтобы представить себе, как должны вести себя сверхзвёзды, эта лекция была до того, как он осознал, что эффекты общей теории относительности дестабилизируют эти сверхзвёзды. Как результат, посвящённые интерпретации фрагменты лекции 14 (разделы 14.3 и 14.4) в большой степени неверны, но несмотря на это представляется интересным указать те пути, которые использовал Фейнман при своём интуитивном подходе к решению этой задачи.

Фейнман никогда не просматривал напечатанную Мориниго и Вагнером версию лекции 14; и в 1971 году, когда он одобрил лекции 12 - 16 для распространения, он скорее всего забыл, что часть лекции 14, связанная с интерпретацией, представляет собой отчёт о рассуждениях, которые однако не принесли достойного плода.

Фейнман начал свою лекцию 14 введением модели сверхзвезды, "которая очень проста, но может, тем не менее, обладать огромным множеством атрибутов реальных процессов. После того, как мы поймём, как обходиться с решением такой простой задачи, мы можем позаботиться об усовершенствованиях в модели.” (Усовершенствования - это учёт влияния электрон-позитронных пар, испускания нейтрино, ядерного горения, вращения, неустойчивостей - будут добавлены позднее в 1963 -64 годах Ибеном [Iben 63], Куртисом Майклом [Mich 63], Фаулером [Fowl 64] и Бардиным [Bard 65] при значительных обсуждениях с Фейнманом и постановке им некоторых задач.)

Поскольку цель Фейнмана состояла в изучении эффектов общей теории относительности, его модель сверхзвезды была полностью общерелятивистская, в отличие от предыдущих моделей Хойла - Фаулера, которые были ньютоновыми. С другой стороны, там, где Фаулер и Хойл включили в рассмотрение вклад и газа, и излучения в давление звезды и внутреннюю плотность энергии, Фейнман упрощает модель, игнорируя вклад газа в давление pгаз и во внутреннюю энергию газ. Это представляется разумным, так как основное внимание Фейнмана сосредоточено на сверхзвезде с массой M=109Msun, а Хойл и Фаулер показали, что в ньютоновском пределе сверхзвезды сильно радиационно-доминировали при

pгаз

pизлучение

=

2газ

излучение

=

=

8,6

Msun

M

1/2

3x10

– 4

10Msun

M

1/2

.

(П.2)

(Здесь для простоты мы предполагаем, что газ является чистым водородом). Поскольку такие звёзды в большой степени являются конвективными, их энтропия на нуклон есть величина, не зависящая от радиуса, что означает в свою очередь, что величина есть 8х(Постоянная Больцмана)/(энтропия на нуклон), есть также величина, не зависящая от радиуса; и этот факт остаётся справедливым и для общерелятивисткого случая, как отдавал себе в этом отчёт Фейнман, хотя уравнение (П.2) меняется на множитель порядка единицы.

Пренебрегая вкладом pгаз и газ, Фейнман приступил в разделе 14.1 и 14.2 лекции 14 к построению общерелятивистских уравнений, описывающих структуру сверхзвёзд, он сообщает, что он проинтегрировал их численно и представил результаты в таблице 14.1. Эта таблица может быть проинтерпретирована с помощью уравнений (14.2.1), в которых параметр Фейнмана есть

=

4/3

энтропия на нуклон

=

=

масса покоя нуклона

Постоянная Больцмана

6

1800

,

(П.3)

так как Фейнман использует единицы, в которых масса покоя нуклона и температура 10 °К кладутся равными единице.

При обсуждении моделей Фейнмана и его (неверной) интерпретации их, полезно было бы использовать рисунок П.1. Этот рисунок показывает некоторые признаки семейства моделей сверхзвёзд, которые построил Фейнман (толстая кривая), совместно с их продолжением на ультрарелятивистский

режим (верхняя тонкая линия) и их продолжением на почти ньютоновский режим (нижняя тонкая линия) - эти продолжения были вычислены позднее Ибеном [Iben 63], Фаулером [Fowl 64], Бардиным [Bard 65] и Тупером [Тоор 66]. По вертикальной оси откладывается гравитационная энергия связи звезды со знаком ”минус”; по горизонтальной оси откладывается радиус звезды. В практически ньютоновском режиме (затенённая область кривой связи энергии), который Фейнман не исследует, нельзя пренебрегать величинами pгаз и газ, энергия связи задаётся (как показал Фаулер [Fowl 64], как отклик на "гром среди ясного неба” Фейнмана) следующим тонким балансом между газовым давлением (первым членом) и эффектами общей теории относительности (второй член):

M-Mrest

Mrest

3

8

2M

R

+

1,3

2M

R

^2

.

(П.4)

Здесь 2M - радиус Шварцшильда чёрной дыры с той же самой массой, что и масса сверхзвезды.

При интерпретации моделей в разделе 14.3 Фейнман начал с того, что спросил об эволюции сверхзвезды, состоящей из фиксированного количества нуклонов (т.е. фиксированной нуклонной массы покоя Mrest), которая постепенно излучает тепловую энергию, что, тем самым, приводит к уменьшению полной массы M и делает звезду более плотно связанной. Он обнаружил странную эволюцию: когда звезда излучает, её радиус увеличивается (движение вниз и направо по толстой кривой на рис. П.1) и её температура в центре уменьшается. Это противоречит поведению большей части других звёзд, которые, когда они излучают, сжимаются и нагреваются, в том случае, если в них не происходит горения термоядерного топлива. (Если вместо того, чтобы иметь дело с полностью релятивистской областью слева от точки минимума кривой связи, Фейнман сохранил бы учёт влияния газа и провёл вычисления в почти ньютоновской области справа, он обнаружил бы противоположное поведение: сверхзвезда должна была бы сжиматься и нагреваться, когда она излучает).

Рис. П.1. Энергия связи звезды, состоящей из водорода. На вертикальной оси слева отложена отрицательная величина относительной энергии связи, т.е. (M-Mrest)Mrest, где M - полная масса звезды и Mrest– полная масса покоя всех нуклонов звезды; по горизонтальной (верхней) оси отложен радиус звезды в единицах радиуса Шварцшильда 2M чёрной дыры с той же самой массой. Масштабы, отложенные на левой оси и верхней оси, справедливы в белой области для сверхзвёзд любой массы, но в (почти ньютоновской) затенённой области только при M=10Msun На вертикальной правой оси отложена отрицательная величина от относительной энергии связи в единицах массы Солнца Msun; на нижней горизонтальной оси отложена величина R/2M, умноженная на отношение газового давления и полного давления. Правый и нижний масштабы оказываются справедливыми для сверхзвёзд любой массы в почти ньютоновский затенённой области, но они оказываются неверными в полностью релятивистской белой области. Вертикальный масштаб является арктангенсом, т.е. он почти линеен при |(M-Mrest)Mrest|1, и логарифмическим при |(M-Mrest)Mrest|1. Толстая часть кривой следует из вычислений Фейнмана, изложенных в лекции 14, тонкие части связаны с работами Ибена [Iben 63], Фаулера [Fowl 64], Бардина [Bard 65] и Тупера [Тоор 66].

Фейнман поставил вопрос о том, являются ли его модели сверхзвёзд устойчивыми. ”Устойчивость нашей звезды не изучена [количественно]”, подчёркивает он и затем продолжает представлять исходные рассуждения по данному вопросу: ”[Модели, которые имеют] одно и то же количество нуклонов и одно и то же значение [одно и то же значение энтропии], могут сравниваться как по значению радиуса, так и по температуре в центре. Факт, состоящий в том, что очевидно имеется минимальное значение радиуса [наиболее левый изгиб на рис. П.1], … является очень соблазнительным; звезда может иметь устойчивую конфигурацию”. Здесь Фейнман интуитивно идёт к методу анализа устойчивости, создание которого было завершено год или более спустя Джеймсом Бардиным, когда он стал аспирантом Фейнмана. Завершённая Бардиным версия аргумента Фейнмана [Bard 65, ВТМ 66] показала, что когда мы движемся вдоль кривой, описывающей энергию связи, ограничивая себя только фиксированными значениями массы Mrest, энтропия меняется от одной модели к другой, за исключением области в окрестности каждого минимума или максимума связи, где конфигурация является стационарной. Это означает, что звезда обладает модой деформации с нулевой частотой для каждого значения минимума или максимума, модой, которая переносит сверхзвезду от одной равновесной модели к другой с тем же самым значением энтропии, энергии связи и массой покоя. Это в свою очередь означает, что одна мода радиальных колебаний меняет устойчивость в каждом экстремуме связи. Анализируя эти конфигурации и рассматривая моды собственных функций, которые должны иметь место, Бардин выводит, что если кривая связи поворачивается по часовой стрелке, когда по ней перемещаемся через экстремум, тогда эта мода становится неустойчивой; если эта кривая поворачивается против часовой стрелке, тогда эта мода становится устойчивой. (Это утверждение является справедливым вне зависимости от того направления, в котором мы движемся по кривой.) Анализ Бардина, приложенный к рис. П.1, показывает, что практически ньютоновские модели в нижнем правом углу (которые сжимаются, когда они излучают) являются устойчивыми, и они должны терять устойчивость и коллапсировать для того, чтобы образовать чёрную дыру, когда они достигают минимума кривой связи; эти модели за точкой минимума (включая все модели Фейнмана) обладают одной неустойчивой модой радиальной пульсации; эти модели за первым пиком в кривой связи (верхняя левая часть рис. П.1) обладают двумя неустойчивыми модами и т.д.

Поделиться с друзьями: