Чтение онлайн

ЖАНРЫ

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Шрифт:

Техника ярлыков, описанная в Диалоге, является, на самом деле, одним из трюков, используемых Е. coli, чтобы перехитрить агрессоров-фагов. Идея заключается в том, что цепочка ДНК может быть химически отмечена путем присоединения к нескольким нуклеотидам маленькой молекулы — метила. Эта операция «наклейки ярлыка» не меняет основных биологических свойств ДНК, другими словами, метилированная (отмеченная ярлыком) ДНК может быть транскрибирована точно так же, как и неметилированная (не отмеченная ярлыком) кислота, таким образом, она может управлять синтезом тех же белков. Однако, если клетка-хозяйка обладает специальным механизмом, проверяющим, отмечена ли ДНК, то ярлык становится крайне важен. В частности, клетка может располагать системой энзимов, распознающих и уничтожающих неотмеченные цепочки ДНК. Найдя такую цепочку, эти энзимы безжалостно рубят ее на куски. В таком случае, увы всем непрошенным гостям!

Метиловые ярлыки на

нуклеотидах можно сравнить со специальным типографским шрифтом. Используя эту метафору, можно сказать, что клетка E coli ищет цепочки ДНК, напечатанные этим «специальным шрифтом» и разрушает любую цепочку ДНК напечатанную иным «шрифтом». Контрстратегией фагов, разумеется, было бы научиться снабжать свою ДНК такими же ярлыками и, таким образом, заставить клетки в которые они вторгаются, воспроизвести эту ДНК.

Эта битва Т-К может продолжаться до произвольных уровней сложности, но мы не будем рассматривать ее дальше. Главное здесь в том, что это битва между хозяином, пытающимся не впустить ни одной чужой ДНК, и фагом, который старается ввести свою ДНК в какую-нибудь клетку, которая транскрибировала бы ее в мРНК (после чего ее воспроизводство было бы гарантировано). Можно сказать, что ДНК, которой удается таким образом воспроизвести себя, интерпретируется на высшем уровне так: «Меня можно воспроизвести в клетках типа X» (В отличие от упомянутого ранее бесполезного с точки зрения эволюции фага, в котором закодированы белки, его же разрушающие, подобный фаг интерпретируется «Меня нельзя воспроизвести в клетках типа X»

Суждения Хенкина и вирусы

Эти противоположные типы автореференции в молекулярной биологии имеют свою параллель в математической логике. Мы уже обсуждали математическую аналогию фагов-самоубийц — я имею в виду строчки Геделева типа, утверждающие собственную невозможность внутри определенных формальных систем. Однако, возможна и параллель с настоящим фагом, утверждающим собственную воспроизводимость в определенной клетке — суждение, утверждающее собственную воспроизводимость в определенной формальной системе. Суждения подобного типа называются суждениями Хенкина, по имени математического логика Леона Хенкина. Они строятся примерно так же, как Геделевы суждения — единственная разница заключается в отсутствии отрицания Мы начинаем, разумеется, с «дяди»:

Eа:Eа' <ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'} ARITHMOQUINE{а'',а'}

и затем проделываем стандартный трюк. Предположим, что Геделев номер приведенного выше «дяди» — h. Арифмоквайнируя дядю, мы получаем суждение Хенкина:

Eа:Eа' <ПАРА-ДОКАЗАТЕЛЬСТВА-ТТЧ{а,а'}

ARITHMOQUINE{SSS…SSS/a'',a'}>

. |____|

S повторяется h раз

(Кстати, видите ли вы, в чем это суждение отличается от —G?) Я привожу его целиком, чтобы показать, что оно не дает «рецепта» собственной деривации; оно просто утверждает, что такая деривация существует. Вы можете спросить, верно ли это утверждение? Существуют ли деривации суждений Хенкина? Действительно ли эти суждения являются теоремами? Полезно вспомнить, что не обязательно верить политику, провозглашающему: «Я честный», — это может оказаться как правдой, так и враньем. Достойны ли суждения Хенкина большего доверия, чем политики?

Оказывается, что суждения Хенкина всегда истинны. Хотя пока нам не совсем понятно, почему это так, придется нам здесь принять этот интересный факт на веру.

Явные и неявные суждения Хенкина

Я упомянул о том, что суждения Хенкина ничего не говорят о собственной деривации; они лишь утверждают, что такая деривация существует. Возможно придумать вариацию на тему суждений Хенкина — а именно, суждения, явно описывающие собственную деривацию. Интерпретацией на высшем уровне подобного суждения было бы не «существует некая последовательность строчек, являющаяся моей деривацией», а «описанная ниже последовательность строчек … является моей деривацией». Давайте назовем первый тип суждений неявным суждением Хенкина. Новое суждение, соответственно, будет явным суждением Хенкина, поскольку в нем содержится явное описание собственной деривации. Заметьте, что в отличие от своих неявных собратьев, явные суждения Хенкина не обязательно должны являться теоремами. На самом деле, очень легко написать строчку, которая утверждает, что ее деривация состоит из единственной строчки 0=0, — ложное утверждение, поскольку 0=0 не является деривацией чего бы то ни было. Однако возможно также написать явное суждение Хенкина, являющееся теоремой, — то есть

суждение, в действительности дающее рецепт собственной деривации.

Суждение Хенкина и самосборка

Я объяснил здесь разницу между явными и неявными суждениями Хенкина потому, что она соответствует важному различию между типами вирусов. Существует некие вирусы, например, такие, как вирусы табачной мозаики, которые называются самособирающимися, и такие вирусы, как наши знакомцы Т-фаги, не являющиеся самособирающимися. Что означает это различие? Оно аналогично различию между явными и неявными суждениями Хенкина.

В ДНК самособирающегося вируса закодированы только части нового вируса, но там нет кода энзимов. Как только эти части оказываются собраны, они присоединяются одна к другой без помощи энзимов. Этот процесс зависит от химического «влечения» частей друг к другу, когда они плавают в густом «химическом бульоне» клетки. Не только вирусы, но также некоторые органеллы — например, рибосомы — способны на самосборку. Иногда для этого бывают нужны энзимы — но в таких случаях они беззастенчиво набираются из клетки-хозяйки и используются для сборки «агрессора». Говоря о самосборке, я имею в виду весь этот процесс.

С другой стороны, в ДНК более сложных вирусов, таких как четные Т- фаги, закодированы не только части, но и различные энзимы, играющие важную роль в сборке этих частей в одно целое. Поскольку процесс сборки здесь не спонтанный, а требующий определенной «техники», подобные вирусы не считаются самособирающимися. Таким образом, основная разница между самособирающимися и не-самособирающимися единицами заключается в том, что первым удается воспроизвестись не сообщая клетке никаких сведений о собственной сборке, в то время как последние должны давать инструкции о том, как их собирать.

Теперь читателю, вероятно, уже ясна параллель с явными и неявными суждениями Хенкина. Неявные суждения Хенкина самодоказательны, но ничего об этих доказательствах не говорят — они аналогичны самособирающимся вирусам. Явные суждения Хенкина управляют построением своего собственного доказательства — они аналогичны более сложным вирусам, дающим клетке-хозяйке команды по построению собственных копий.

Понятие самособирающихся биологических структур такой сложности как вирусы, поднимает вопрос о возможности создания сложных самособирающихся машин. Представьте себе набор частей, которые, если поместить их в благоприятное окружение, спонтанно группируются и собираются в сложную машину. Это звучит неправдоподобно, но, на самом деле, это весьма аккуратное описание процесса самовоспроизводства вируса табачной мозаики путем самосборки. Информация для сборки организма не сконцентрирована в какой-то одной его части, а распространена по всем частям.

Это идея может завести нас довольно далеко, как было показано в Диалоге «Благочестивые размышления курильщика». Мы видели, как Краб использовал идею о том что информация для самосборки может быть распространена по всем частям аппарата, вместо того, чтобы быть сконцентрированной в какой-то одной его части. Он надеялся, что это предохранит его новый патефон от Черепашьих атак. К несчастью, так же, как и в случае самых сложных схем аксиом, как только система построена и «упакована в ящик», эта определенность делает ее уязвимой для достаточно хитрого «Геделизатора»— это и было темой грустного рассказа Краба. Несмотря на кажущуюся бессмысленность, фантастический сценарий этого Диалога не так далек от реальности в странном, сюрреалистическом мире клетки.

Две выдающиеся проблемы: Дифференциация и Морфогенезис

 Допустим что посредством самосборки строятся организмы на уровне клеток и некоторых вирусов — но как насчет сложнейших макроскопических структур таких, как тела слона, паука или венериной мухоловки? Как встроены в мозг птицы инстинкт нахождения дома или в мозг собаки — охотничий инстинкт? Каким образом, всего лишь диктуя, какие белки должны производиться в клетке, ДНК осуществляет такой удивительно точный контроль над структурой и функциями макроскопических живых организмов? Здесь возникают две вопроса. Один касается клеточных различий каким образом разные клетки, имеющие абсолютно одинаковую ДНК, выполняют различные роли — скажем клеток почек костного мозга или головного мозга? Другой вопрос касается морфогенезиса («рождения формы») каким образом межклеточное сообщение на местном уровне ответственно за образование крупномасштабных, глобальных структур — таких как части тела, форма лица, разные области мозга? Хотя в настоящий момент наше понимание клеточных различий и морфогенезиса ограниченно, мы предполагаем, что этот метод заключается в весьма тонком и точно отлаженном механизме прямой и обратной связи между клетками, говорящем им, когда они должны «включать» и «выключать» производство различных белков.

Поделиться с друзьями: