История электротехники
Шрифт:
Электрическая, или «вольтова», дуга представляла собой в буквальном смысле яркое проявление электрического освещения. Принципиальными недостатками дугового источника являются, во-первых, открытое пламя (и отсюда пожарная опасность), огромная сила света и необходимость регулирования дугового промежутка по мере сгорания углей.
В 1844 г. французский физик Жан Бернар Фуко (1819–1868 гг.), именем которого названы исследованные им вихревые токи (напомним, что открыты они были Д.Ф. Араго), заменил электроды из древесного угля электродами из ретортного угля, что способствовало увеличению продолжительности горения лампы. Регулирование оставалось еще ручным. Такие лампы могли получить применение лишь в тех случаях, когда требовалось непродолжительное по времени, но интенсивное освещение, например при подсветке
Дальнейшая история дугового электрического освещения связана с изобретением различных механических и электромагнитных регуляторов, так как по мере сгорания электродов расстояние между ними возрастало и электрическая дуга гасла. Регулятор был самой сложной и дорогостоящей частью дуговой лампы.
Одной из первых по времени (1848 г.) конструкций дуговой лампы с электромагнитным регулятором была лампа французского механика Аршро (рис. 2.25). Эта лампа, в частности, применялась для освещения площади перед зданием Адмиралтейства в Петербурге. Большую известность получило применение десяти дуговых ламп с регуляторами талантливого русского изобретателя Александра Ильича Шпаковского (1823–1881 гг.) в 1856 г. при иллюминации на Лефортовском плацу в Москве во время торжеств по случаю коронации Александра II. Их по праву называли «электрическими солнцами Шпаковского». В них применялось комбинированное (электрическое и механическое) регулирование. Эти лампы были наиболее современными, в том числе и по сравнению с зарубежными.
По характеру электрической схемы питания регуляторы разделяли на три группы: с последовательным и параллельным питанием, дифференциальные (рис. 2.26). В регуляторах с последовательным питанием обмотка электромагнита включалась последовательно с дугой, а с параллельным — параллельно. В дифференциальном регуляторе горение дуги регулировалось как последовательной, так и параллельной обмотками. После включения лампы регулятор работал при любом положении углей. Электромагнитные регуляторы в дуговых электрических лампах, обеспечивающие автоматическое регулирование расстояния между электродами дуги, были самыми распространенными электрическими устройствами в 50–70-х годах XIX в. До появления свечи Яблочкова в 1876 г. электромагнитный регулятор являлся наиболее важным конструктивным узлом дуговых ламп, без которого последние не могли работать. Большинство дуговых ламп различалось только устройством регулятора.
Наиболее совершенные дифференциальные регуляторы были разработаны в 1869–1870 гг. известным русским электротехником, одним из основателей журнала
«Электричество» Владимиром Николаевичем Чиколевым (1845–1898 гг.). Им впервые в мировой электротехнической практике был применен метод электромашинного регулирования. На рис. 2.27 показана дуговая лампас электромашинным регулятором. Последовательная и параллельная обмотки регулятора служили обмотками возбуждения двигателя 3, 4. Действие электромагнитов было встречным: при сгорании углей 1 усиливалось действие параллельной обмотки, якорь 5 вращалвал 2 в одну сторону и угли сближались. При чрезмерном сближении углей усиливалось действие последовательной обмотки, угли раздвигались.
Идея дифференциального регулятора, получившего широкое применение в прожекторостроении, была использована другими конструкторами, в частности немецким фабрикантом З. Шуккертом. Крупносерийный выпуск дуговых ламп с дифференциальным регулятором был налажен в конце 70-х годов на заводах В. Сименса (с которыми объединялись заводы 3. Шуккерта), и такая лампа стала продаваться под именем «дуговая лампа Сименса».
С 80-х годов дуговые лампы с дифференциальным регулятором стали единственным типом дуговых источников света, которые применялись для освещения улиц, площадей, гаваней, а также для освещения больших помещений производственного и общественного назначения; они стали традиционными источниками света в прожекторной и светопроекционной технике.
Самая первая лампа накаливания была построена английским физиком У. Деларю (1819–1889 гг.). В этой лампе накаливалась платиновая спираль, находящаяся в стеклянной трубке.
Следующий шаг был сделан в 1838 г., когда бельгиец Жобар стал накаливать угольные стержни в разреженном пространстве. Эта лампа была, конечно, дешевле, но срок ее службы был незначительным.
После 1840 г. были предложены многочисленные конструкции ламп накаливания: с телом накала из платины, иридия, угля или графита и т.д.
В 1854 г. по улицам Нью-Йорка разъезжал немецкий эмигрант Генрих Гебель (1818–1893 гг.), на повозке которого находилась подзорная труба и лампа накаливания. Последняя служила для привлечения публики, которая приглашалась взглянуть через подзорную трубу на кольца Сатурна. Замечательным было то, что телом накала в лампе Гебеля служило обугленное бамбуковое волокно; нить была помещена в верхнюю часть закрытой барометрической трубки, т.е. в разреженное пространство. Медные проводники подходили к нити накала сквозь стекло. Лампа Гебеля могла гореть в течение нескольких часов.
В 1860 г. Джон В. Сван (1828–1914 гг.) в Англии впервые применил для лампы накаливания обугленные полоски толстой бумаги или бристольского картона, накаливавшиеся в вакууме.
Дальнейшее развитие электрического освещения будет рассмотрено в следующей, третьей главе.
2.1. Петров В.В. Известие о гальвани-вольтовских опытах. СПб., 1803.
2.2. Шнейберг Я.А. Василий Владимирович Петров. М.: Наука, 1985.
2.3. Ампер А. Электродинамика. М.: Изд-во АН СССР, 1954.
2.4. Кошманов В.В. Георг Ом. М.: Просвещение, 1980.
2.5. Кирхгоф Г.Р. Избранные труды. М.: Наука, 1958.
2.6. Фарадей М. Экспериментальные исследования по электричеству. М.: Изд-во АН СССР, 1947.
2.7. Цверава Г.К. Джозеф Генри. Л.: Наука, 1983.
2.8. Максвелл Д.К. Избранные сочинения по теории электромагнитного поля. М.: Гостехиздат, 1934.
2.9. Ленц Э.Х. Избранные труды. М.: Изд-во АН СССР, 1950.
2.10. Лежнева О.А., Ржонсницкий Б.Н. Эмилий Христианович Ленц. М. — Л.: Госэнергоиздат, 1952.
2.11. Майер Р. Закон сохранения и превращения энергии. М.: Гостехиздат, 1933.
2.12. Бернал Дж. Наука в истории общества. М.: Изд. иностр. лит., 1956.
2.13. Электродвигатель в его историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1936.
2.14. Яроцкий А.В. Борис Семенович Якоби. М.: Наука, 1988.
2.15. Гусев С.А. Очерки по истории электрических машин. М.: Госэнергоиздат, 1955.
2.16. Динамомашина в ее историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1934.