Чтение онлайн

ЖАНРЫ

КВ-приемник мирового уровня? Это очень просто!
Шрифт:

«Н»: Я где-то слышал, что диапазон воспринимаемых человеческим ухом частот лежит в пределах от 16 до 20000 герц!

«А»: А обыкновенная речь (не музыка) ограничена диапазоном 150—4500 герц! Я не слишком ошибся?

«С»: Не слишком!.. Некоторые исследователи, кстати, считают, что диапазон воспринимаемых верхних частот простирается до 30 кГц! Однако понятно, что эти частоты сами по себе в «эфир» с помощью антенн приемлемых размеров переданы быть не могут! Поэтому для технического решения подобных задач используется МОДУЛЯЦИЯ. А что это такое, видно на примере так называемой АМПЛИТУДНОЙ МОДУЛЯЦИИ (см. рис. 5.4).

Вопросы

к иллюстрирующим этот термин рисункам имеются?

«А»: У меня — нет! А у тебя Незнайкин?

«Н»: Только один! Высокая частота может быть любой?

«С»: В принципе, да! Но показанная здесь АМПЛИТУДНАЯ модуляция (или AM) применяется только в диапазонах ДВ, СВ и КВ!

Поскольку считается самой примитивной и помехонеустойчивой. Например, в диапазоне УКВ применяется более совершенная, ЧАСТОТНАЯ МОДУЛЯЦИЯ!

«Н»: А на рисунке ее можно изобразить?

«С»: Без проблем! Да вот она на рис. 5.5.

«Н»: То есть в этом случае непостоянна именно частота сигнала?

«С»: Конечно, при том, что амплитуда сигнала сохраняет свою величину! Имеются значительно более совершенные виды модуляции.

Например, ИМПУЛЬСНАЯ, ФАЗОВАЯ, ИМПУЛЬСНО-ЧАСТОТНАЯ и т. д. Но при всем, при том — в области длинных, средних и коротких волн для радиовещания применяется и будет применяться еще долго ИМЕННО ЭТА, такая «плохая» и «устаревшая» АМПЛИТУДНАЯ МОДУЛЯЦИЯ!

«А»: Казалось бы, если уж она такая «плохая», то смените ее на другую — «хорошую» да и дело с концом!

«С»: Это уже давно пытаются сделать! Вот, например, еще в 1915 г. Джон Карсон изобрел ОДНОПОЛОСНУЮ МОДУЛЯЦИЮ, которая экономила и мощность, и полосу частот.

Любопытно, что однополосная модуляция (или SSB) появилась как практическое следствие математического анализа модулированной несущей!

Но прежде, чем говорить об SSB или, например, частотной модуляции, давайте вернемся к вопросам детектирования!

Прежде всего, Незнайкин! Для чего оно необходимо? Почему нельзя (см. рис. 5.4, иллюстрирующий AM) просто подать сигнал вида «в» на головные телефоны или динамик?

«Н»: «Это мы не проходили, это нам не задавали!» А, действительно, почему?

«С»: Потому что, сделай мы подобное, ничего-то бы мы с вами не услышали! Не может мембрана динамика колебаться с такой частотой! Да и ухо человека ВЧ — колебания просто не воспримет.

Значит, остается только один выход — ВЫДЕЛИТЬ НИЗКОЧАСТОТНЫЙ СИГНАЛ! А как это сделать?

«А»: Наверное проще всего — применив для этой цели некий электронный прибор, имеющий высокую проводимость в одном направлении и исключительно низкую — в другом! Проще говоря, использовать для этой цели полупроводниковый ДИОД!

«С»: Ты безусловно прав! Но ведь вы с Незнайкиным еще не рассматривали диоды, транзисторы, микросхемы, оптроны и т. д.! Как же нам быть?

«Н»: А может, рассмотрим принципы выделения НЧ — сигналов без рассмотрения физических принципов функционирования диодов? А о самих диодах поговорим в последующих беседах?

«С»: Разумно! Итак, на представленной схеме показан простейший детектор амплитудно-модулированных сигналов, а рядышком представлена эпюра выходного напряжения UA.

В качестве сопротивления нагрузки Rн могут использоваться наушники (рис. 5.6).

«Н»: А какова роль конденсатора С?

«С»: Накапливая на себе поступающий за время каждого полупериода электрический заряд, конденсатор С позволяет поддерживать на нагрузке плавно меняющееся напряжение низкой частоты. Поэтому разрядный ток, протекающий через Rн, будет являться не серией амплитудно-модулированных импульсов, а настоящим током НИЗКОЙ ЧАСТОТЫ!

Ну вот! А теперь я рисую первую блок-схему, а ты, Незнайкин, постарайся ее правильно истрактовать (рис. 5.7)!

«Н»: «Я не волшебник, я еще только учусь», но мне кажется, что УВЧ — это усилитель высокой частоты, а УНЧ — соответственно, низкой частоты!

«А»: И какова же роль УВЧ?

«Н»: Я полагаю, что все дело в амплитуде высокочастотного сигнала, поступающего от антенны. Каким-то образом (я пока затрудняюсь объяснить этот феномен), но УВЧ, сохраняя временные зависимости относительного изменения амплитуды сигнала, способен увеличивать их абсолютный размах!.. Затем усиленный сигнал детектируется, а дальше поступает на вход УНЧ. Затем на динамик, после чего мы имеем удовольствие слушать интересные радиопередачи!

«С»: Поздравляю! Ты поведал нам об устройстве и принципе работы ПРИЕМНИКА ПРЯМОГО УСИЛЕНИЯ, в просторечии — ПРЯМИКА!

«Н»: А что, применяются и иные блок-схемы?

«С»: Вне всякого сомнения! Поскольку приемники прямого усиления имеют немалое количество очень серьезных недостатков. Ну, например, начинающие радиолюбители часто строят простенькие транзисторные «прямички». Но ТОЛЬКО для диапазонов длинных и средних волн!

«Н»: А почему их нельзя применить и для диапазона коротких волн?

«А»: Прежде всего потому, что входной настраиваемый колебательный контур (или целая система колебательных контуров), получивший в технической литературе наименование ПРЕСЕЛЕКТОР, не обладает сколько-нибудь существенной избирательностью в диапазоне коротких волн!

«Н»: А что такое вообще — ИЗБИРАТЕЛЬНОСТЬ?

«А»: Вернемся к нашему избирательному контуру. И, в частности, к его АЧХ (см. рис. 5.8).

«Н»: А что это за вертикальные линии на рисунке, обозначенные как f1; f2; f3 и f4?

«А»: Здесь я представил вполне реальную ситуацию, когда в эфире, кроме станции с несущей частотой f0, работают еще и другие радиостанции. Вот их частоты и соответствуют изображенным на рисунке вертикальным линиям!

Поделиться с друзьями: