Чтение онлайн

ЖАНРЫ

КВ-приемник мирового уровня? Это очень просто!
Шрифт:

Есть высокопрецизионные ОУ, которые реализованы целиком на супер-бетах! Например, К140УД17. Имеется большая номенклатура ОУ, во входных каскадах которых применены согласованные полевые транзисторы. Это: К140УД22; К140УД23; К544УД1; К574УД1/2/3; К1407УДЗ и т. д.

«Н»: А вот специальные малошумящие ОУ имеются?

«С»: Не без этого…Но мы еще вернемся к рассмотрению конкретных ОУ, когда будем рассматривать конкретные же узлы. А сейчас считаю необходимым упомянуть и о других аналоговых микросхемах. Вот, например, об аналоговых перемножителях.

В аналоговом ПЕРЕМНОЖИТЕЛЕ НАПРЯЖЕНИЯ

выходное напряжение пропорционально произведению входных. Эти микросхемы имеют еще и второе название — БАЛАНСНЫЙ МОДУЛЯТОР. Во всех перемножителях Uвых = KХУ, где: K — масштабный коэффициент; X и У — напряжения, подаваемые на входы.

«Н»: А какую функцию аналоговые перемножители могут выполнять в радиоприемнике?

«С»: На них хорошо, например, строить смесители частот или, скажем, синхронные детекторы. На всякий случай, запомним наименования таких АП, как К525ПС1; К525ПС2; К140МА1; К526ПС1.

«А»: А вот по какому ведомству зачислять транзисторные сборки?

«С»: Да, вопрос интересный! Тем более, что транзисторные сборки достаточно широко применяются в специальной радиоприемной технике. В свое время немало радости разработчикам принесла микросборка «Рондо», в дальнейшем получившая стандартное наименование К159НТ1. Она содержала пару n-р-n– транзисторов, эмиттеры которых были соединены.

«Н»: Не могу понять смысла производства подобной сборки! Ведь два обыкновенных транзистора с одинаковым В будут работать не хуже?

«С»: А вот здесь ты сильно ошибаешься, Незнайкин! Подбор двух экземпляров транзисторов, пусть даже с одинаковой В — проблемы не решает! Дело в том, что, в отличие от дискретных транзисторов, ИМЕННО В МИКРОСБОРКАХ транзисторные пары имеют не только одинаковые В, но и еще одно серьезное преимущество.

Оно заключается в том, что при равных коллекторных токах, разница в напряжениях база — эмиттер составляет величину не более 1–3 милливольт!

Это значит, что включенные по схеме дифференциального усилителя, при изменении температуры окружающей среды в достаточно широких пределах, подобные сборки обладают исключительно малым дрейфом параметров! Что делает их незаменимыми, например, в точных стабилизаторах напряжения.

«А»: То есть в нашем случае они найдут практическое применение?

«С»: Мы еще не добрались до принципиальных схем, но в этом случае могу заранее однозначно ответить — ДА!

«А»: А какие типы микросборок найдут у нас применение?

«С»: Вот, например, К198НТ1; К198НТ5; К198НТ7; К504НТ1/2/3 и т. п.

«А»: Ну, а что, в таком случае, можно сказать по поводу применения в приемнике цифровых микросхем?

«С»: Пока только то, что их количество будет исчисляться десятками!

«Н»: Почему бы раньше не рассмотреть вопрос, что вообще представляют из себя эти самые цифровые схемы?

«С»:

Да, час настал!..Вы уже знаете, что в нашем приемнике частота принимаемого сигнала должна индицироваться пятиразрядным ЦОУ. Это значит, что несущая частота сигнала должна быть преобразована в соответствующую последовательность прямоугольных импульсов, количество которых затем подсчитывается в десятеричной системе счисления и индицируется.

Но… так никто не поступает! Поскольку… сигнал данной частоты на входе приемника может присутствовать, а может и не присутствовать! Согласны?

«А»: Ну конечно, потому что при перестройке частоты приема мы можем «пробегать» участки, соответствующие зонам молчания!

«С»: Только вообразите, что будет твориться при этом на цифровой шкале! Кроме чувства некомфортности и раздражения, я полагаю, иных чувств у пользователя это не вызовет!

«Н»: Но ведь есть же какой-то выход из всего этого?

«С»: Есть! Поступают следующим образом. ЦОУ измеряет не частоту входного сигнала, который, как говорилось, может присутствовать на антенном входе, а может и не присутствовать. Поэтому измеряют частоту плавного гетеродина (ГПД). Естественно допустить, что в исправном приемнике гетеродин должен работать всегда!

«Н»: Если приемник включен!?

«А»: Ну безусловно! Но тогда ЦОУ показывает не частоту приема, а частоту гетеродина? Следовательно, оператор приемника должен быстренько в уме вычесть из текущей частоты гетеродина значение промежуточной частоты своего приемника и, таким образом, определиться, какую частоту он принимает?

«С»: Вы, друзья мои, слишком плохого мнения о современной цифровой технике! В действительности, всё обстоит вовсе не так мрачно! ЦОУ само, в течение каждого цикла подсчета частоты приема, вносит соответствующую поправку и выдаёт на цифроиндикатор ИСТИННУЮ ЧАСТОТУ приема! Ну вот, а теперь давайте разберемся, как и с помощью какой элементной базы реализируются эти прогрессивные идеи.

«А»: Я полагаю с помощью цифровых микросхем. Но ведь их такое множество! Причем самых разнообразных типов! К примеру — транзисторно-транзисторная логика (ТТЛ); эмиттерно-связанная логика (ЭСЛ); диодно-транзисторная логика (ДТЛ); транзисторно-транзисторная логика с переходом Шоттки (ТТЛШ); комплементарная металл — окисел — полупроводниковая логика (КМОП) и так далее.

«С»: Верно, но список этот можно весьма расширить. Например, ТТЛШ по международной терминологии имеет также различные технологии, как AS — сверхскоростные перспективные с переходом Шоттки; ALS — перспективные экономичные с переходом Шоттки; FAST — компромиссные между AS и ALS. О КМОП — логике и говорить нечего. Она развивается потрясающими темпами!

«А»: А ЭСЛ — постепенно отмирает?

«С»: Дорогой Аматор, прошу, больше никогда не говори подобного! Как говорил (по другому правда поводу) один гуцульский вуйко — вот уж чего нет, того нет!

«А»: Но не будем же мы применять ВСЕ разновидности цифровых микросхем?

«С»: Все, конечно же, не будем! А вот пару-тройку разновидностей видов цифровых микросхем — обязательно!

«А»: Но не ТТЛ ведь?

Поделиться с друзьями: