Чтение онлайн

ЖАНРЫ

Квантовая теория и раскол в физике
Шрифт:

Формула такого рода характерна для любой волновой теории. Она, на-

пример, возникает, если волновая теория света прилагается к ситуации, когда

луч света, распространяющийся вдоль оси xпадает на экран с узкой щелью.

Чем уже щель qx, тем больше будет после прохождения луча через щель

угол рассеяния импульса этого луча в направлении y. (Аналогичный результат

получается из шредингеровской волновой теории электронов.) 18

Формула (1) может быть получена,

например, путем применения волно-

вого уравнения к описанной физической ситуации. Это говорит о том, что фор-

мула нуждается в интерпретации: она возникает из теории, когда теория при-

лагается к таким опытам, как опыт с лучом, падающим на экран с узкой щелью, а также к сходным опытам.

Согласно Гейзенбергу и копенгагенской интерпретации, дело здесь в

проблеме, которая возникает при всяком измерении, так что формула (1) спра-

ведлива для всех измеренийнекоммутирующих пар переменных и для всех эле-

ментарных частиц, скажем протонов, электронов.

На первых порах она не рассматривалась как часть формализма самого по

себе (таковой частью, например, считалось уравнение Шредингера). Она выво-

дилась Гейзенбергом путем приложения формализма к небольшому числу та-

ких физических ситуаций, которые могут быть представлены как измерения.

Гейзенберг пытался объяснитьограничения, которые его интерпретация

накладывает на все возможные измерения, указывая, что если мы измеряем

элементарную частицу, мы возмущаем ее или воздействуем на нее.

Эта ранняя интерпретация предполагала, что частица имеетотчетливо

фиксируемое положение иимпульс, но мы никогда не можем их точно изме-

рить из-за нашего взаимодействия с ней. Эта интерпретация изменилась после

того, как Шредингер предположил, что частица может быть представлена вол-

новым пакетом и может в действительности бытьтаким пакетом [19].

Аргумент Эйнштейна, Подольского и Розена может трактоваться как на-

правленный против (а) представления о том, что частица не может обладатьв

одно и тоже время точной координатой и точным импульсом, (б) представления

о том, что всякоеизмерение координаты должно возмущать импульс частицы и

vice versa. Рассмотренный очень кратко, он представляет собой следующее [20].

Представим себе составную систему, описываемую уравнением Шредин-

гера и состоящую, скажем, из двух частиц Aи B, которые предварительно со-

ударялись друг с другом. После соударения они разлетаются в разные стороны, и над одной из частиц, скажем A, проводится измерение. Мы можем выбирать, 19

какое свойство подлежит измерению, например, измерять координату или им-

пульс. Если измеряется координата A,

то результат измерения вместе с

функцией составной системы позволяет найти координату B. Если измеряется

импульс A, то аналогичным образом можно определить импульс B. "Квантовая

механика, – пишет Эйнштейн, – дает нам тогда (т.е. после измерения над A) -

функцию для подсистемы B, и мы получаем разные -функции, которые разли-

чаются выбранным способом измерения системы A"[21]. Частицу Bможно

тем временем поместить, скажем, на Сириус. Иными словами, в противопо-

ложность тому, что заявляет копенгагенская интерпретация, мы имеем возмож-

ность измерять координату или импульс B, не возмущая эту систему (возмущая

только подсистему A).

В самом деле, Bслишком удалена, чтобы на нее можно было бы воздей-

ствовать. В ЭПР аргументе предполагается, что дальнодействие невозможно

(что следует из специальной теории относительности). Это предположение

позднее было названо "принципом локальности" и "принципом локального дей-

ствия". Исходя из факта, что мы можем определить координату и импульс час-

тицы B, не измеряя их непосредственно (проводя измерения только над A), Эйнштейн заключил, что частица Bобладает одновременно как координатой, так и импульсом, и что при каждом из двух решений – измерять либо коорди-

нату, либо импульс – квантовая механика даст нам о Bнеполную информацию.

Причем ограниченность возможной информации о Bне вытекает из нашего

возмущения B– ведь мы не воздействуем на B.Измеряя импульс A(и воздейст-

вуя на A), мы возмущаем ее координату, измеряя координату A(и воздействуя

на A), мы возмущаем ее импульс. Однако мы не можем воздействовать также

на B, которая может находиться на расстоянии нескольких световых лет от Aи, стало быть, никак не затрагиваться теми измерениями, которые производятся

над A(если, разумеется, не принимается дальнодействие, мгновенное действие, распространяющееся со скоростью, большей световой, ибо измерение над Aда-

ет нам информацию о Bв тот же момент времени, в который мы проводим это

измерение).

Поделиться с друзьями: