Лестница жизни. Десять величайших изобретений эволюции
Шрифт:
Так зачем клетки сохраняют митохондриальный геном? По мнению такого известного вольнодумца, как Джон Аллен, чьи соображения о происхождении фотосинтеза мы обсуждали в главе 3, ответ прост: для управления дыханием. Никакой другой причины было бы недостаточно. Для разных людей слово «дыхание» означает разное. Для большинства оно подразумевает лишь вдыхание и выдыхание воздуха. Но для биохимиков этот термин относится к тонкостям, сопровождающим дыхание в клетках: к последовательности невидимых глазу реакций, за счет которых молекулы пищи взаимодействуют с кислородом, генерируя в митохондриях напряжение, сравнимое с тем, что вызывает молнии. Я затрудняюсь назвать другой процесс, на который естественный отбор может действовать так же мгновенно и неумолимо, как на дыхание, в том числе и на молекулярном, внутриклеточном уровне. Например, цианиды блокируют именно клеточное дыхание, убивая клетки еще быстрее, чем человека убивает полиэтиленовый мешок, надетый на голову. Даже во время нормальной работы дыхания оно требует постоянной тонкой настройки, «подкручивания» определенных регуляторов, чтобы количество вырабатываемой энергии соответствовало потребностям в ней. Принципиально, по мнению Аллена, здесь то, что подгонка объема вырабатываемой энергии под спрос требует постоянной обратной связи, которая возможна лишь за счет управления
Справедливость вывода Аллена еще отнюдь не доказана, хотя данные, свидетельствующие в его пользу, продолжают поступать. Если Аллен прав, то некоторые следствия, вытекающие из его концепции, помогают объяснить и особенности эволюции эукариотических клеток. Если для управления дыханием эукариотических клеток просто необходимо поддерживать целый ряд генетических аванпостов, вполне логично предположить, что крупная, сложная клетка вообще не может без них управлять своим дыханием. Представьте себе давление отбора, с которым сталкиваются бактерии и архей. И те, и другие производят АТФ точно так же, как это делают митохондрии: генерируя электрическое напряжение на мембране. Однако прокариоты используют для этого свою наружную клеточную мембрану, что накладывает ограничения на их размеры. Они как бы дышат кожей. Чтобы понять, почему это накладывает ограничения на размеры, представьте себе чистку картофеля. Если нам нужно почистить тонну картофеля, лучше выбирать самые крупные клубни, и тогда количество чищеного картофеля по отношению к количеству кожуры будет больше. И наоборот, если чистить маленькие картофелины, мы получим больше кожуры. Бактерии похожи на картофель, который дышит через кожуру: чем больше бактериальная клетка, тем труднее ей дышать [34] .
34
По чисто геометрическим причинам отношение площади поверхности к объему уменьшается с увеличением объема, потому что площадь поверхности возрастает пропорционально квадрату линейных размеров, а объем — кубу. Удвоение линейных размеров увеличивает площадь поверхности вчетверо (2 x 2 = 4), а объем в восемь раз (2 x 2 x 2 = 8). В результате при увеличении размеров клетки уменьшается отношение площади мембраны, используемой для производства энергии, к объему клетки, и энергетическая производительность бактерии падает.
В принципе, бактерии могли бы обойти эти трудности с дыханием, переведя свои мембраны для генерации энергии внутрь клеток. На практике так иногда и происходит, как мы отмечали выше: у некоторых бактерий действительно имеются внутренние мембраны, отчасти придающие им «эукариотический» вид. Однако они недалеко зашли по этому пути: в «усредненной» эукариотической клетке в сотни раз больше внутренних мембран, с помощью которых вырабатывается энергия, чем в клетках самых энергичных бактерий. Как и в отношении многих других признаков, бактерии недалеко зашли в эукариотическую часть спектра. Почему? Подозреваю, потому, что они не в состоянии успешно управлять дыханием на внутренних мембранах, если их площадь слишком велика. Для этого им пришлось бы «делегировать» на места многочисленные наборы генов, как это делается в эукариотической клетке с ее митохондриями, а устроить это не так-то просто. Все давление отбора на бактерии, заставляющее их быстро делиться и отбрасывать избыточные гены, поддерживая геном минимального размера, препятствует развитию среди них крупных, сложных форм.
Но именно это и требуется для фагоцитоза. Фагоциты должны быть достаточно крупными, чтобы пожирать другие клетки. Кроме того, им нужно немало энергии для передвижения, активного изменения формы и заглатывания жертв. Беда в том, что по мере увеличения размеров бактерии становятся менее энергичными и постепенно теряют возможность тратить энергию на движение и изменение формы. Мне кажется, что крошечная бактерия, прекрасно приспособленная к быстрому размножению, всегда одержит верх над более крупной, энергетически неполноценной, задолго до того, как та сможет обрести в ходе эволюции все атрибуты фагоцита.
В ситуации же, описываемой гипотезой «судьбоносной встречи», все могло быть по-другому. Здесь клетки двух разных прокариот могли сосуществовать друг с другом в метаболической гармонии, оказывая друг другу взаимовыгодные услуги. Среди прокариот симбиотические отношения такого рода настолько обычны, что их можно считать скорее правилом, чем исключением. Гораздо реже ученые регистрируют физическое поглощение одного партнера другим. Когда это происходит, вся сложная клетка, включающая теперь и оказавшиеся внутри нее бактерии, может эволюционировать как единое целое. Участники симбиоза продолжают обслуживать друг друга, но все их избыточные качества постепенно теряются, пока у оказавшихся внутри бактерий не остается почти никаких функций, кроме работы на клетку-хозяина, то есть выработки энергии — в случае бактерий, ставших митохондриями.
Огромное преимущество, которое дают митохондрии, и причина, по которой митохондрии вообще позволили эукариотической клетке эволюционировать, заключается в том, что они дали ей готовую систему внутренних энергетических мембран наряду с «аванпостами» генов, необходимых для локального управления дыханием. Лишь когда клетка-хозяин обзавелась митохондриями, она смогла увеличиться в размерах в достаточной степени, чтобы стать крупным, активным фагоцитом, способным тратить на фагоцитоз достаточно энергии, не делаясь при этом неполноценным. Если так, то примитивный фагоцит, не имевший митохондрий, никогда и не существовал: без митохондрий фагоцитоз просто невозможен [35] . Эукариотическая клетка была выкована в союзе двух прокариотических клеток. Этот союз позволил снять ограничения, из-за которых бактерии были вынуждены оставаться бактериями. Когда эти ограничения были сняты, впервые стал возможен новый образ жизни — фагоцитоз. Эукариотическая клетка возникла лишь однажды потому, что союз двух видов прокариот, при котором одна клетка пробирается внутрь другой, возможен крайне редко. Это была поистине судьбоносная встреча. Всем, что нам дорого в жизни, всеми чудесами нашего мира мы обязаны одному-единственному событию, воплотившему собой счастливое сочетание
случая и необходимости.35
Я отстаивал эту точку зрения в лекциях, с которыми выступал по всему миру, и пока не встретил «убийственных» возражений. Самое серьезное возражение выдвинул Кавалир-Смит. Он указал на существование фагоцитоза у некоторых современных эукариотических клеток, не имеющих митохондрий. Но я не думаю, что их существование опровергает тезис о невозможности фагоцитоза без митохондрий, потому что отбор оказывает особенно сильное давление на тех прокариот, которые используют для дыхания наружную мембрану. Когда фагоцит уже сформировался, какие-то из его частей в зависимости от обстоятельств могли уничтожаться (эволюционная редукция — обычное явление, особенно у паразитов). Уже развившемуся фагоциту было намного легче утратить митохондрии в определенных условиях (например, связанных с паразитизмом), чем прокариотической клетке развиться в фагоцита без помощи митохондрий.
В начале главы я отметил, что мы сможем разобраться в происхождении эукариотической клетки, только когда поймем значение ее главного атрибута — ядра.
Вопросы о происхождении клеточного ядра, да и о происхождении самой эукариотической клетки, вызвали к жизни множество теорий, предполагавших его возникновение как из простых пузырьков клеточной мембраны, так и из целых клеток, поглощенных другими. Но большинство этих идей совершенно не выдерживает критики. Так, многие из них не согласуются с имеющимися данными о строении ядерной мембраны, представляющей собой не сплошную пленку, как наружная мембрана любой клетки, а совокупность пронизанных крупными порами уплощенных пузырьков, неразрывно связанную с другими внутренними мембранами клетки. Иные версии никак не объясняют преимущества, которые клетка с ядром должна была получить по сравнению с клеткой без ядра. Обычный ответ в таком случае гласит, что ядерная мембрана «защищает» гены, но здесь сразу же напрашивается вопрос: от чего защищает? От кражи? От вандализма? Если наличие ядра дает клетке какие-то универсальные преимущества, которым благоприятствует естественный отбор, то почему ни у одной бактерии так и не развилось ядро? У некоторых из них, как мы убедились, имеются внутренние мембраны, на основе которых оно могло бы возникнуть.
Рис. 4.6. Строение ядерной оболочки, неразрывно связанной с внутренними мембранами клетки (а именно — с эндоплазматической сетью). Ядерная мембрана образована путем слияния показанных здесь уплощенных пузырьков. Она совсем не похожа по строению на наружную мембрану ни одной клетки, а значит, ядро едва ли произошло от поселившейся внутри клетки-хозяина другой клетки.
Надежных данных на этот счет у нас мало, но мне хотелось бы изложить еще одну блистательную гипотезу, предложенную двумя проницательными учеными, с которыми мы познакомились в главе 2: Биллом Мартином и Евгением Куниным. У этой идеи два огромных достоинства. Во-первых, она объясняет, почему ядро должно было развиться как раз в химерной клетке, а именно — в клетке полуархеи-полубактерии (от нее, согласно наиболее правдоподобной теории, произошли эукариотические клетки). Во-вторых, она объясняет, почему ядро почти любой эукариотической клетки должно быть наполнено ничего не кодирующей ДНК — совсем не такой, как в клетках бактерий. Даже если эта идея ошибочна, она, по-моему, по крайней мере соответствует правильному направлению поисков. К тому же она поднимает вопрос о серьезной проблеме, с которой должны были столкнуться первые эукариоты. Это одна из тех догадок, которые придают науке оттенок волшебства, и я надеюсь, что она верна.
Мартин и Кунин обратились к странному устройству эукариотических генов, «разбитых на кусочки». Открытие такого их строения было одним из самых больших сюрпризов, преподнесенных биологами в XX веке. В отличие от бактериальных генов, выстроенных как по линейке, эукариотические гены состоят из отдельных фрагментов, разделенных длинными некодирующими последовательностями. Эти некодирующие последовательности называют интронами (introns, от англ. ingragenic regions — внутригенные участки), и их эволюционная история лишь недавно стала проясняться.
Хотя между интронами немало различий, теперь известно, что у них имеются некоторые общие черты, выдающие их общее происхождение от одной из разновидностей «прыгающих» генов (транспозонов), способных заражать геном, реплицируясь с бешеной скоростью, то есть ведя себя как настоящие эгоистичные гены. Фокус довольно прост: когда «прыгающий» ген считывается на РНК (обычно в составе более длин ной последовательности), он самопроизвольно сворачивается, образуя структуру, работающую как РНК-«ножницы», и вырезает себя из цепочки, в состав которой он входил. После этого на его матрице синтезируются многочисленные ДНК-копии Эти новые отрезки ДНК, точные копии эгоистичного оригинала встраиваются обратно в геном более или менее случайным об разом. Существует много типов «прыгающих» генов, но все они представляют собой своеобразные вариации на одну и ту же тему. Их поразительный эволюционный успех красноречиво подтверждают результаты проекта «Геном человека» и других масштабных проектов по прочтению геномов. Почти половина человеческого генома состоит из «прыгающих» генов или их испорченных (мутировавших) остатков. В среднем в любой человеческий ген встроено три «прыгающих» гена, «живых» или «мертвых».
Мертвый «прыгающий» ген (испортившийся настолько, что он больше не может прыгать) еще хуже «живого»: этот, по крайней мере, вырезает сам себя из РНК, не принося существенного вреда, а «мертвый» просто загораживает дорогу. Раз он не может сам себя вырезать, зараженной клетке нужно что-то с ним делать, иначе кодируемая им последовательность аминокислот будет встроена в белок и вызовет страшную неразбериху. Эукариотические клетки еще на раннем этапе своей эволюции изобрели способ вырезать из своих матричных РНК нежелательные участки. Интересно, что для этого они просто позаимствовали РНК-«ножницы» у одного из «прыгающих» генов и заключили их в белковую упаковку. Все современные эукариоты, от растений и грибов до животных, пользуются этими древними ножницами для вырезания некодирующих участков ДНК. Мы наблюдаем замечательную картину. Эукариотические геномы пересыпаны интронами, происходящими из эгоистичных «прыгающих» генов, и всякий раз, когда с ДНК считывается ген, эти интроны вырезаются из матричной РНК с помощью РНК-«ножниц», которые, в свою очередь, украдены у самих же «прыгающих» генов. И проблема, и причина, по которой все это имеет непосредственное отношение к происхождению ядра, в том, что эти древние «ножницы» режут довольно медленно.