Чтение онлайн

ЖАНРЫ

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

11.1.5. Улучшенное моделирование свободных колебаний

Вернемся к задаче моделирования системы второго порядка и попытаемся найти решения в более удобном виде, обычно приводимом в учебниках после ряда преобразований. Для этого достаточно воспользоваться пакетом расширения DEtools. Рис. 11.11 показывает начало документа с составленным дифференциальным уравнением и его решением. Нетрудно заметить, что теперь решение представлено в классическом виде, который обычно приводится в учебниках по теории колебаний.

Рис. 11.11. Решение дифференциального уравнения свободных колебаний с применением

пакета DEtools

На рис. 11.12 показана вторая часть документа с решением для конкретных данных и построением графика временной зависимости свободных колебаний. Нетрудно заметить, что свободные колебания системы имеют вид затухающих синусоидальных колебаний. Вы можете проверить, что при р<0 колебания будут нарастать по экспоненциальному закону, что характерно для генераторных систем.

Рис. 11.12. Пример вычисления временной зависимости свободных колебаний и построения их графика

Нередко о характере колебаний удобно судить по фазовому портрету колебаний. Он задается графиком в параметрической форме, при которой по одной оси откладывается зависимость у(t), а по другой — ее производная. Это показано на рис. 11.13. Фазовый портрет в данном случае представляет собой сворачивающуюся спираль.

Рис. 11.13. Фазовый портрет затухающих свободных колебаний

11.1.6. Улучшенное моделирование колебаний при синусоидальном воздействии

По аналогии с последним примером можно рассмотреть поведение системы второго порядка при синусоидальном воздействии. На рис. 11.14 представлено начало документа, в котором задано исходное дифференциальное уравнение и получено его общее и частное аналитические решения.

Рис. 11.14. Пример аналитического решения задачи на поведение системы второго порядка при синусоидальном воздействии

На рис. 11.15 представлены временные диаграммы реакции системы и синусоидального воздействия. Кроме того, построен фазовый портрет колебаний. Он заметно отличается от спирали и хорошо иллюстрирует сложность колебаний в начале их развития.

Рис. 11.15. Результаты моделирования цепи второго порядка при синусоидальном воздействии

К сожалению, применение пакета расширения DEtools усложняет функцию dsolve решения дифференциальных уравнений. В результате время моделирования даже простых систем удлиняется до минут, а более сложные системы могут потребовать куда более длительного времени моделирования. В этом случае может оказаться целесообразным отказаться от получения аналитических зависимостей для результатов моделирования и перейти к численному моделированию.

11.1.7. Улучшенное моделирование колебаний при пилообразном воздействии

Рассмотрим методику улучшенного моделирования еще на одном примере — вычислении реакции системы при пилообразном воздействии. На рис. 11.16 показано задание такого воздействия с помощью функции floor. Для упрощения расчетных выражений амплитуда и период воздействия взяты равными я. Поскольку в данном случае аналитическое решение получить невозможно (функция floor не позволяет этого), то заменим воздействие рядом Фурье. Его коэффициенты также представлены на рис. 11.16.

Рис. 11.16. Начало

моделирование системы с пилообразным воздействием, представленным рядом Фурье

На рис. 11.17 представлены графики воздействия в идеальном случае и при его представлении рядом Фурье с пятью гармоники. Показано также аналитическое решение для временной зависимости y(t) при таком воздействии.

Рис. 11.17. Воздействие и временная зависимость реакции системы при пилообразной форме воздействия

Наконец на рис. 11.18 показан график реакции системы на пилообразное воздействие и фазовый портрет колебаний в ней. Нетрудно заметить, что форма воздействия достаточно слабо влияет на форму временной зависимости реакции системы на заданное воздействие. Это следствие резонансных свойств системы.

Рис. 11.18. Реакция системы на пилообразное воздействие и фазовый портрет колебании при таком воздействии

Нелинейные системы второго порядка, к сожалению, не имеют общих аналитических решений и для моделирования таких систем следует использовать численные методы решения дифференциальных уравнений. Примеры такого рода уже приводились в главе 7, посвященной решению дифференциальных уравнений. Другие примеры вы найдете ниже.

11.1.8. Анализ и моделирование линейных систем операторным методом

Произвольные линейные системы могут анализироваться и моделироваться хорошо известным (особенно в электротехнике и радиотехнике) операторным методом. При этом методе система и ее воздействие представляются операторными выражениями, т. е. в виде функций параметра — оператора Лапласа s (в литературе встречается и обозначение p). Не вникая в детали этого общеизвестного метода, рассмотрим конкретный пример (файл linsys). Он, для сравнения с предшествующими примерами, дан для системы второго порядка, хотя в данном случае никаких ограничений на порядок системы нет.

Для начала зададим инициализацию применяемых пакетов расширения

> restart:with(plots): readlib(spline): with(inttrans):

Warning, the name changecoords has been redefined

Далее зададим операторные выражения для коэффициента передачи системы G и входного сигнала R (в виде единичного перепада) и вычислим с упрощением их произведение:

> G := K/(M*s^2+C*s+1); R := 1/s;

> X := simplify(R*G);

Теперь, используя обратное преобразование Лапласа, найдем временную зависимость реакции системы в аналитическом (что наиболее ценно) виде:

> h := simplify(invlaplace(X, s, t));

Теперь мы можем построить график этой зависимости для конкретных значений М, С и K:

> h1 : = subs(M=1,C=0.75,K=1,h);

h1 := 0.5393598900 I (-1.854019622 I + 1.854049622 I e(-0.3750000000 t) cosh(0.9270248110 I t) + 0.75 e(-0.3750000000 t) sinh(0.9270248110 I t))
Поделиться с друзьями: