Чтение онлайн

ЖАНРЫ

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

degree(р,[]) = 0

degree(р,[x1,х2,...]) = degree(р,x1)

degree(lcoeff(р,x1),[х2,...])

Полная степень тогда определяется следующим образом:

degree(р, {x1, ...,xn}) = maximum degree(р,{x1,...xn))

или

degree(р,{x1,...,xn}) = degree(p,[x1,...,xn])

Обращаем внимание на то, что векторная степень зависит от порядка перечисления неизвестных, а полная степень не зависит. Примеры применения функций degree и ldegree:

> restart;

> р:=а4*х^4+a3*х^3+а2*х^2;

р:=а4
х4 + a3 x3 + а2 х2

> degree(р,х);

4

> ldegree(р,х);

2

> q:=1/х^2+2/х+3+4*х+5*х^2;

> degree(q,х);

2

> ldegree(q,х);

– 2

> degree(x*sin(x),x);

FAIL

> zero := y*(x/(x+1)+1/(x+1)-1);

> degree(zero,x);degree(zero, y);

FAIL
1

> degree(collect(zero,x,normal),x);degree(collect(zero,y, normal),y);

– ∞
– ∞

5.3.5. Контроль полинома на наличие несокращаемых множителей

Для контроля того, имеет ли полином несокращаемые множители, может использоваться функция irreduc(p) и ее вариант в инертной форме lreduc(p,K), где K — RootOf-выражение. Ниже приведены примеры применения этих тестовых функций:

> irreduc(х^2-1);

false

> irreduc(х^2-2);

true

> Irreduc(2*x^2+6*x+6) mod 7;

false

> Irreduc(x^4+x+1) mod 2;

true

> alias(alpha=RootOf(x^4+x+1)):

> Irreduc(х^4+х+1,alpha) mod 2;

false

5.3.6. Разложение полинома по степеням

Для разложения полинома р по степеням служат инертные функции AFactor(p) и AFactors(p). Полином может быть представлен в виде зависимости от одной или нескольких переменных.

Функция Afactor(p) выполняет полную факторизацию (разложение) полинома p от нескольких переменных с коэффициентами в виде алгебраических чисел над полем комплексных чисел. При этом справедливо отношение evala(AFactor(p))= factor(p.complex). Таким образом, эта функция является, по существу, избыточной.

В случае одномерного полинома полное разложение на множители является разложением на линейные множители. Функция AFactors аналогична функции Afactor, но создает структуру данных формы [u,[[f[1],e[1]],…,[f[n],e[n]]]] так, что p=u*f[1]^e[1]*…*f[n]^e[n], где каждый f[i] — неприводимый полином.

Ниже даны примеры применения функции Afactor:

> evala(AFactor(2*х^2+4*х-6));

2(x+3)(х-1)

> evala(AFactor(х^2+2*у^2));

(х - RootOf(_Z² + 2)y) (x + RootOf(_Z² + 2)y)

> expand((x-1) * (x-2) * (x-3) * (x-4));

x4– 10 x3 + 35 x2– 50 x + 24

> AFactor(%);

AFactor(x4– 10 x3 + 35 x2 50 x + 24)

> evala(%);

(x-1)(x-2)(x-3)(x-4)

> expand((x-1+I*2)*(x+1-I*2)*(x-3));

x³ - 3x² + 3x - 9 + 4 I x-12 I

> evala(AFactor(%));

(x - 3)(x² + 3 + 4I)

> evala(AFactors(х^2-2*у^2));

[1, [[x - RootOf(_Z² - 2)y, 1], [x + RootOf(_Z² + 2)y, 1]]]

Нетрудно

заметить, что разложение полинома на множители позволяет оценить наличие у него корней. Однако для этого удобнее воспользоваться специальными функциями, рассмотренными ниже.

5.3.7. Вычисление корней полинома

Для вычисления действительных и комплексных корней полиномов служит уже известная нам функции solve(p, x), возвращающая список корней полинома p одной переменной. Кроме того, имеются следующие функции для вычисления корней полиномов:

roots(р)

roots(р, K)

roots(р, х)

roots(р, x, K)

Эти функции вычисляют точные корни в рациональной или алгебраической области чисел. Корни возвращаются в виде [[r1,m1], [rn, mn]], где mi — это корень полинома, a mi — порядковый номер полинома. С действиями этих функций можно разобраться с помощью приведенных ниже примеров:

> р:=х^4 1-9*х^3+31*х^2+59*х+60;

р:=х4 + 9х3 + 31х2 + 59 х + 60

> solve(р,х);

– 3, -4, -1 + 2I, -1-2I

> roots(р,х);

[[-4, 1], [-3, 1]]

> roots(х^2-4,х);

[[2, 1], [-2, 1]]

> expend((х-1)*(х-2)*(х-3)*(х-4));

х4– 10х3 +35х2– 50 х + 24

> roots(%,х);

[[1, 1], [2, 1], [3, 1], [4, 1]]

5.3.8. Основные операции с полиномами

С полиномами могут выполняться различные операции. Прежде всего, отметим некоторые функции, которые относятся к одному полиному:

psqrt(p) — возвращает квадрат полинома;

proot(p,n) — возвращает n-ю степень полинома;

realroot(p) — возвращает интервал, в котором находятся действительные корни полинома;

randpoly(vars, eqns) — возвращает случайный полином по переменным vars (список) с максимальной степенью eqns;

discrim(p, var) — вычисление дискриминанта полинома по переменной var;

Primitive(a) mod p — проверка полинома на примитивность (возвращает true, если полином примитивен).

Действие этих функций достаточно очевидно, поэтому ограничимся приведением примеров их использования (файл polop):

> psqrt(х^2+2*х*у+у^2);

у + x

> proot(х^3+3*х^2+3*х+1, 3);

Поделиться с друзьями: