свободной памяти. Она напоминает комбинацию конструктора (функция
init
выполняет инициализацию) и оператора
new
(функция
malloc
выделяет память).
struct List* create /* создает пустой список */
{
struct List* lst =
(struct List*)malloc(sizeof(struct List));
init(lst);
return lst;
}
Функция
clear
предполагает, что все узлы уже созданы и расположены в свободной памяти, и удаляет их оттуда с помощью функции
free
.
void clear(struct List* lst) /* удаляет все элементы списка lst */
{
assert(lst);
{
struct Link* curr = lst–>first;
while(curr) {
struct Link* next = curr–>suc;
free(curr);
curr = next;
}
lst–>first = lst–>last = 0;
}
}
Обратите внимание на способ, с помощью которого мы обходим список, используя член
suc
класса
Link
. Мы не можем получить безопасный доступ к члену объекта после его удаления с помощью функции
free
, поэтому ввели переменную
next
, с помощью которой храним информацию о своей позиции в контейнере
List
, одновременно удаляя объекты класса
Link
с помощью функции
free
.
Если не все объекты структуры
Link
находятся в свободной памяти, лучше не вызывать функцию
clear
, иначе она вызовет разрушение памяти.
Функция
destroy
, по существу, противоположна функции
create
, т.е. она представляет собой сочетание деструктора и оператора
delete
.
void destroy(struct List* lst) /* удаляет все элементы списка lst;
затем удаляет сам список lst */
{
assert(lst);
clear(lst);
free(lst);
}
Обратите внимание на то, что перед вызовом функции очистки памяти (деструктора) мы не делаем никаких предположений об элементах, представленных в виде узлов списка. Эта схема не является полноценной имитацией методов языка С++ — она для этого не предназначена.
Функция
push_back
— добавление узла
Link
в конец списка — вполне очевидна.
void push_back(struct List* lst, struct Link* p) /* добавляет элемент p
в конец списка lst */
{
assert(lst);
{
struct Link* last = lst–>last;
if (last) {
last–>suc = p; /* добавляет узел p после узла last */
p–>pre = last;
}
else {
lst–>first = p; /* p —
первый элемент */
p–>pre = 0;
}
lst–>last = p; /* p — новый последний элемент */
p–>suc = 0;
}
}
Весь этот код было бы трудно написать, не нарисовав схему, состоящую из нескольких прямоугольников и стрелок. Обратите внимание на то, что мы забыли рассмотреть вариант, в котором аргумент
p
равен нулю. Передайте нуль вместо указателя на узел, и ваша программа даст сбой. Этот код нельзя назвать совершенно неправильным, но он не соответствует промышленным стандартам. Его цель — проиллюстрировать общепринятые и полезные методы (а также обычные недостатки и ошибки).
возвращает указатель на узел, расположенный после узла p
*/
{
assert(lst);
if (p==0) return 0; /* OK для вызова erase(0) */
if (p == lst–>first) {
if (p–>suc) {
lst–>first = p–>suc; /* последователь становится
первым */
p–>suc–>pre = 0;
return p–>suc;
}
else {
lst–>first = lst–>last = 0; /* список становится
пустым */
return 0;
}
}
else if (p == lst–>last) {
if (p–>pre) {
lst–>last = p–>pre; /* предшественник становится
последним */
p–>pre–>suc = 0;
}
else {
lst–>first = lst–>last = 0; /* список становится
пустым */
return 0;
}
}
else {
p–>suc–>pre = p–>pre;
p–>pre–>suc = p–>suc;
return p–>suc;
}
}
Остальные функции читатели могут написать в качестве упражнения, поскольку для нашего (очень простого) теста они не нужны. Однако теперь мы должны разрешить основную загадку этого проекта: где находятся данные в элементах списка? Как реализовать простой список имен, представленных в виде С-строк. Рассмотрим следующий пример: