Чтение онлайн

ЖАНРЫ

Пространство, время и движение. Величайшие идеи Вселенной
Шрифт:

Мы столкнулись с важной и порой неочевидной особенностью искривленного пространства (или пространства-времени): не существует универсального способа, позволяющего сравнить векторы, находящиеся в разных точках. Мы можем переместить вектор, не изменяя его положения относительно траектории, но результат будет зависеть от нашего выбора: другая траектория может дать совершенно иной результат. Вот почему мы не можем, к примеру, судить о «скоростях» далеких галактик в расширяющейся Вселенной. Да, мы все пытаемся их измерить, однако непроизвольно делаем выбор в пользу какого-то определенного способа сравнения. Это нормально, но мы должны помнить о разнице между тем, что определено четко и точно, а что просто удобно для нас. Примерно о том же мы говорили в главе 6, отправляя близнеца в космос: нужно мыслить локально и сравнивать величины,

измеренные в одной и той же точке, а не обманывать себя, пытаясь сопоставить происходящее где-то далеко с тем, что творится рядом с нами.

Геодезические линии

В начале главы 3 мы думали, как провести прямую линию между двумя деревьями. Можно натянуть между ними веревку, а можно просто идти от одного к другому. В обоих случаях мы получим одну и ту же прямую. Все то же самое можно проделать и на любом искривленном многообразии в геометрии Римана, хотя построенная линия вряд ли будет прямой. К примеру, на сфере мы получим большой круг или его дугу.

Линия между двумя точками, при движении по которой мы проходим минимальное расстояние (или затрачиваем максимум собственного времени, если речь идет о пространстве-времени), называется геодезической. Такие линии описываются формулами (см. приложение Б), которые можно вывести примерно так же, как делалось в главе 3 при обсуждении принципа наименьшего действия. Тогда мы говорили о пространстве путей, по которым может пройти частица, связывали с каждым из них какое-то количество действия и находили такой, на котором оно минимально (а производная действия в пространстве путей равна нулю). При поиске геодезических линий мы будем действовать точно так же, но вместо действия будем минимизировать длину кривой.

Геодезическая линия — это не только кратчайший путь: она во всех отношениях ведет себя, как прямая. Например, при движении по ней работает параллельный перенос вектора. Рассмотрим траекторию, которая представляет собой последовательность точек с параметром, позволяющим определить местоположение вдоль нее. Например, мы можем использовать формулу xi(t), где xi — координаты в соответствующем количестве измерений (сколько бы их ни было), а t — параметр, определенный вдоль траектории. (Часто таким параметром действительно служит время, но здесь буква t лишь удобное обозначение.) Тогда можно определить вектор скорости vi = dxi/dt, который направлен по касательной к траектории по ходу движения. Его длина показывает, как быстро мы перемещаемся.

А что значит «сохранять направление движения»? Это когда положение вектора скорости относительно траектории не изменяется, то есть осуществляется параллельный перенос этого вектора. Поэтому можно дать еще одно определение геодезической линии: это путь, при движении по которому вектор скорости остается параллельным начальному вектору скорости. Выходит, что параллельный перенос вектора связан с метрическим тензором: кривые, на которых возможен параллельный перенос, имеют минимальную длину.

Кривизна

Итак, к чему мы пришли? Метрический тензор — самая базовая геометрическая структура многообразия. Он позволяет определять длины траекторий, находить площади и объемы многомерных областей пространства и вычислять скалярные произведения векторов. Он говорит нам, как выполнять параллельный перенос векторов вдоль кривой: мы выяснили, что для этого нужны геодезические линии — кратчайшие пути между точками. Именно параллельный перенос позволит нам сложить последнюю часть головоломки: полностью кривизну пространства.

Сфера и гиперболическая плоскость — это самые простые искривленные многообразия, кривизна которых одинакова во всех

точках и направлениях. Для более сложных случаев хотелось бы придумать способ надежно определять кривизну в любой точке многообразия. Мы уже поняли, что метрика не слишком подходит для этой цели, поскольку зависит от выбранной системы координат и при одной и той же геометрии может быть проще или сложнее. Нужная нам величина (возможно, тензор) должна однозначно показывать кривизну пространства и принимать нулевое значение при ее отсутствии.

При параллельном переносе вектора по двум разным траекториям итоговый вектор не совпадает с исходным. Мы уже видели это на примере сферы, когда переносили вектор с экватора на полюс. Аналогичным образом, если начать движение с полюса, дойти до экватора, переместиться вдоль него, а затем вернуться на полюс, направление вектора также изменится. Это очень важный момент: параллельный перенос по замкнутому контуру, как правило, не позволяет сохранить исходный вектор. По крайней мере в искривленных пространствах.

Мы можем использовать это наблюдение для оценки кривизны: на плоских множествах при параллельном переносе по замкнутому контуру вектор сохраняет направление, на искривленных — отклоняется на какой-то угол.

Однако проблема в том, что замкнутых контуров очень много и описать поведение векторов на них едва ли реально. Поэтому мы должны выбрать какой-то ограниченный набор характерных контуров, которые несложно описать в численном виде.

И здесь нам на помощь придет уже ставший привычным прием: мы будем мыслить бесконечно малыми величинами и применять высшую математику. Такой подход к изучению пространств с произвольной кривизной называется дифференциальной геометрией.

Представим себе два вектора,

и
, исходящие из одной точки p. Начиная из этой точки, сместимся на бесконечно малое расстояние в направлении
, а затем на бесконечно малое расстояние в направлении
. (Технически мы перемещаемся на расстояние, пропорциональное длине этих векторов.) После этого мы вернемся в исходную точку, сначала сместившись в направлении, обратном
, а затем в направлении, обратном
. Таким образом мы получили бесконечно малый замкнутый контур, который имеет форму параллелограмма [23] .

23

Если вам кажется, что из-за кривизны пространства мы можем не попасть в исходную точку, вы правы: это действительно так. Но так как наш контур очень мал, расхождение будет пренебрежимо мало по сравнению с величинами, которые мы хотим измерить.

Чтобы определить такой контур, не требуется много данных: нужны всего два вектора и точка. Чтобы измерить кривизну, возьмем еще один, третий вектор

, который также исходит из начальной точки. В результате параллельного переноса по контуру мы получим новый вектор
. На плоском многообразии старый и новый векторы совпадут:
, на искривленном же будут немного отличаться друг от друга. Поэтому мы можем найти их разность:

Поделиться с друзьями: