Чтение онлайн

ЖАНРЫ

Шрифт:

Теперь мы уже в состоянии перейти к изучению феномена, с которым мы постоянно будем встречаться в дальнейшем на разных уровнях абстрактности в математике или в естественных науках Нового времени. По отношению к процессу развития абстрактного мышления в науке его можно было бы назвать чем-то вроде прафеномена, [88] — хотя Гёте, разумеется, не использовал бы это изобретенное им выражение в подобном контексте. Феномен этот можно назвать, положим, развертыванием абстрактных структур. Понятия, первоначально полученные путем абстрагирования от конкретного опыта, обретают собственную жизнь. Они оказываются более содержательными и продуктивными, чем можно было ожидать поначалу. В последующем развитии они обнаруживают собственные конструктивные возможности: они способствуют построению новых форм и понятий, позволяют установить связи между ними и могут быть в известных пределах применимы в наших попытках понять мир явлений.

88

80 См. статью «Картина природы у Гёте и научно-технический мир» — наст, изд., с. 306–323.

Например, из понятия счета и связанных с ним простых операций вычисления развилась в дальнейшем — отчасти в Античности, отчасти в Новое время — сложная арифметика и теория чисел. Эти науки открыли, по сути дела, только то, что с самого начала было заложено в понятии числа. Далее, число и развитое на его основе учение о числовых отношениях позволили измерять и сравнивать отрезки. Отсюда возникла наука геометрии, которая в концептуальном

отношении выходит за пределы учения о числе. Уже попытка пифагорейцев положить теорию чисел в основание геометрии натолкнулась на трудности, связанные с отношением несоизмеримых отрезков. В результате они должны были расширить совокупность известных чисел, они были в какой-то мере вынуждены изобрести иррациональное число. Двигаясь дальше, греки пришли к понятию континуума и к знаменитым парадоксам, которые впоследствии были изучены философом Зеноном. Мы, впрочем, не собираемся здесь углубляться в трудности, с которыми было связано развитие математики, нам важно просто показать, какое богатство форм заложено в понятии числа и может быть в нем раскрыто.

Итак, абстрагирование может происходить следующим образом: сформированное вначале абстрактное понятие начинает жить собственной жизнью, оно дает начало новым формам или упорядочивающим структурам, изобилие которых превосходит все ожидания. Впоследствии же эти структуры могут оказаться полезными в понимании явлений окружающего мира.

В связи с этим основным феноменом разгорелась пресловутая полемика о том, что же, собственно, является объектом математики. Вряд ли можно сомневаться в том, что в математике мы имеем дело с настоящим познанием. Но познанием чего? Описываем ли мы в математике нечто объективно сущее, нечто такое, что в каком-то смысле существует независимо от человека, или же математика представляет собой всего лишь выражение способности человеческого мышления? Не являются ли выводимые в математике законы просто утверждениями о структуре человеческого мышления? Я не намерен заниматься здесь этими трудными проблемами всерьез, хочу лишь высказать несколько соображений, подтверждающих объективный характер математики.

Не лишено вероятности, что на других планетах, скажем на Марсе, а если нет, то в других солнечных системах, существует нечто похожее на жизнь. И безусловно, следует считаться с той возможностью, что на каком-нибудь другом небесном теле живут существа, у которых способность к абстрактному мышлению развилась достаточно, чтобы создать понятие числа. Если это так и если они строят на основе понятия числа математическую науку, то они придут к тем же теоретико-числовым утверждениям, что и мы, люди. Арифметика и теория чисел в принципе не могут быть у них другого вида, чем у нас; их результаты должны совпадать с нашими. Следовательно, если считать математику набором утверждений о мышлении человека, то, во всяком случае, речь идет о мышлении как таковом, а не просто о нашем человеческом мышлении. Поскольку вообще существует мышление, математика должна быть одинаковой. Это утверждение можно сопоставить с другим, относящимся к области естественных наук. На других планетах или на еще более удаленных небесных телах, несомненно, действуют те же самые законы природы, что и у нас. Это вовсе не просто теоретическое допущение; ведь с помощью телескопов мы можем убедиться в том, что там присутствуют такие же, как у нас, химические элементы, что они образуют те же самые химические соединения и свет, который они испускают, имеет ту же самую спектральную структуру. Но не станем пока выяснять, имеет ли этот эмпирический естественнонаучный факт какое-либо отношение к тому, что мы только что говорили о математике, а если имеет, то какое.

Прежде чем переходить к развитию естественных наук, обратимся еще раз к математике. На протяжении своей истории математика постоянно формировала новые, все более емкие понятия и поднималась, таким образом, на новые уровни абстрактности. Область чисел расширилась, включив в себя иррациональные числа, а затем комплексные числа. Понятие функции открыло доступ в царство высшего анализа, дифференциального и интегрального исчисления. Понятие группы оказалось продуктивным в алгебре, геометрии и теории функций. Оно навело на мысль о том, что на высшем уровне абстрактности удастся, быть может, упорядочить и понять всю математику, во всем многообразии ее дисциплин с единой точки зрения. В качестве абстрактной основы такого объединения всей математики была разработана теория множеств. Трудности теории множеств вынудили в итоге перейти от математики к математической логике, которая нашла свое развитие в 20-х годах, особенно в работах Давида Гильберта и его сотрудников в Геттингене [89] . Каждый раз приходилось подниматься с достигнутого уровня абстрактности на следующий, поскольку в той ограниченной области, где проблемы первоначально возникли, их нельзя было не только по-настоящему решить, но даже и как следует осмыслить. Лишь включение их в контекст более широких проблем открывало возможность по-новому понять их, а это в свою очередь позволяло формировать новые, еще более емкие понятия. Стоило убедиться, к примеру, что аксиому параллельных в евклидовой геометрии доказать невозможно, как была разработана неевклидова геометрия. Но действительное понимание пришло только после того, как был поставлен гораздо более общий вопрос: можно ли доказать в данной системе аксиом, что она не содержит противоречия? [90] Только когда вопрос был поставлен таким образом, была затронута сама суть проблемы. В конце концов развитие математики привело к тому, что основания ее могут обсуждаться только в чрезвычайно абстрактных понятиях, которые, кажется, полностью утратили какую бы то ни было связь с миром предметного опыта. Математик и философ Бертран Рассел высказался так: «Математика — это занятие, в котором никогда не известно, ни о чем говорят, ни истинно ли то, что говорят». (Поясним вторую часть высказывания: всегда можно убедиться в том, что математические формулы правильны, но не в том, существуют ли в действительности объекты, к которым они могли бы относиться.) Но история математики служит нам здесь всего лишь примером, позволяющим признать неизбежность движения к большей абстрактности и к унифицированности. Теперь следует задаться вопросом, происходит ли что-нибудь подобное в естественных науках.

89

81 Давид Гильберт (1862–1943) — один из крупнейших математиков и логиков XX в. В полемике с интуиционизмом Л. Э. Брауэра Гильберт разрабатывал широкую программу последовательной формализации логической структуры математики. В 1899 г. Гильберт дал строго аксиоматическое построение геометрии Евклида (Гильберт Д. Основания геометрии. М., Л., Гостехиздат, 1948). Работы Д. Гильберта и его учеников (П. Бернайс, В. Аккерман, Г. Генцен, И. фон Нейман и др.) развивали прежде всего теорию доказательства или метаматематику. В 1954–1939 годах Гильберт в соавторстве с П. Бернайсом опубликовал капитальный труд «Основания математики» (Hilbert D., Bernays Р. Grundlagen der Mathematik. Berlin, 1934, Bd. 1; 1939, Bd. 2. Перевод: Гильберт Д., Бернайс П. Основания математики. Т. 1. Логические исчисления и формализация арифметики. Т. II. Теория доказательства. М., «Наука», 1979, 1982 гг.).

90

82 Это основная проблема так называемой метаматематики. См.: Клини С. Введение в метаматематику. М., ИЛ., 1957. Цитируемое ниже высказывание Б. Рассела относится к 1910 г. См.: Рассел Б. Новейшие работы о началах математики//Новые идея в математике. Сб. 1. Математика. Проблемы и значение ее. СПб., «Образование», 1913, с. 83.

Мне хотелось бы начать с науки, предмет которой наиболее близок к жизни и потому должен был бы быть наименее абстрактным. Я имею в виду биологию. При ее старом разделении на зоологию и ботанику она большей частью была описанием многообразия форм, в которых встречается жизнь на Земле. Биологическая наука занималась сравнением форм с целью внести порядок в явления жизни, изобилие которых кажется поначалу почти необозримым. Велись поиски регулярностей или закономерностей, действующих в сфере живого. Но тут возникал естественный вопрос: с какой точки зрения можно сравнивать

организмы, что за общие признаки могли бы послужить основанием для такого сравнения? Именно на этот вопрос стремился ответить, например, Гёте в исследованиях метаморфозы растений. Здесь-то и пришлось сделать первый шаг к абстракции. Теперь начинали уже не с вопроса об отдельных организмах, а с проблемы характерных для жизни биологических функций, таких, как рост, метаболизм, воспроизводство, дыхание, кровообращение. Здесь и была найдена та точка зрения, которая, несмотря на все разнообразие организмов, позволяла легко их сравнивать. Подобно абстрактным понятиям математики, понятие биологических функций оказалось на редкость продуктивным. В нем открылась как бы внутренне присущая ему способность упорядочивать весьма широкие сферы биологии. Так, изучение процесса наследования признаков привело к возникновению эволюционной теории Дарвина, которая впервые позволяла интерпретировать все многообразие органической жизни на Земле с единой, всеобъемлющей точки зрения.

С другой стороны, исследования дыхания и метаболизма неизбежно подводили к вопросу о химии жизненных процессов; возникла мысль сравнить их с процессами, идущими в химической колбе. В результате был переброшен мост от биологии к химии, но тут же возник вопрос, подчиняются ли химические процессы в организме тем же законам, что и в неживой среде. Таким образом, вопрос о биологических функциях уступил место другому: с помощью каких материальных механизмов осуществляются эти функции в природе? Пока внимание было направлено на биологические функции сами по себе, стиль рассмотрения проблем еще вполне соответствовал умонастроению людей типа врача и философа Каруса [91] , бывшего в дружеских отношениях с Гёте. Он указывал на тесную связь между функциональными отправлениями организма и бессознательными движениями души. Но когда был поставлен вопрос о материальном воплощении этих функций, рамки биологии в собственном смысле слова были сломаны. Отныне стало ясно, что реальное понимание биологических процессов возможно только в том случае, если будут научно проанализированы и интерпретированы соответствующие им химические и физические процессы.

91

83 Карл Густав Карус (1789–1869) — врач, сравнительный анатом, психолог, натурфилософ, живописец-романтик, состоял в переписке с Гёте и опубликовал о нем ряд статей.

На этом, следующем уровне абстрактности наука отвлекается, таким образом, от биологической специфики и спрашивает только о том, какие физико-химические процессы, действительно происходящие в организме, соответствуют биологическим процессам. Идя таким путем, в настоящее время мы подошли к установлению весьма общего механизма, которым, по-видимому, совершенно единообразно определяются все процессы жизни на Земле. Проще всего выразить их на языке атомной физики. В качестве конкретного примера можно упомянуть факторы наследственности, которые переходят от организма к организму, подчиняясь известным законам Менделя. Эти факторы наследственности материально и зримо представлены в виде данной последовательности четырех специфических молекулярных групп, многократно сцепленных друг с другом в двух нитях молекулярной спирали так называемой дезоксирибонуклеиновой кислоты (ДНК), которая играет ведущую роль в строении клеточного ядра. Так расширение биологии, перенос ее проблем в сферу химии и атомной физики сделали возможным единое понимание некоторых фундаментальных биологических явлений, общих для всего живого на Земле. Пока еще остается нерешенным, те же ли физические и химические структуры лежат в основе жизни, существующей, возможно, и на других планетах, однако, по всей видимости, ответ на этот вопрос — дело не очень далекого будущего.

Развитие химии шло во многом подобно развитию биологии. Остановлюсь только на одном эпизоде из истории химии, показательном с точки зрения феномена абстрагирования и унификации, а именно на развитии понятия валентности. Химия занимается качествами веществ и решает вопрос, как можно превратить вещества с одними качествами в другие вещества с отличающимися качествами, как можно соединять, разделять и изменять вещества. Когда соединения веществ начали анализировать количественно, то есть задаваться вопросом о количестве различных химических элементов, присутствующих в соответствующем соединении, был открыт закон кратных отношений. Уже и раньше в качестве удобного образа, помогающего представить себе соединение элементов, пользовались идеей атома. При этом отталкивались от известной аналогии: если, скажем, смешать белый и красный песок, возникает песок, красноватый цвет которого будет светлее или темнее в зависимости от пропорционального состава смеси. Подобным образом, мысленно заменяя песчинки атомами, представляли себе и химическое соединение двух элементов. А поскольку свойства химического соединения отличаются от свойств образующих его элементов сильнее, чем смесь песка от двух его исходных сортов, можно было уточнить эту картину, предполагая, что разные атомы первоначально группируются в молекулы, которые и представляют собой мельчайшие единицы соединения. Целочисленные отношения основных веществ в различных соединениях можно было интерпретировать как соотношение числа атомов в молекуле. Такая наглядная интерпретация в самом деле подтверждалась экспериментами, и в результате можно было приписать каждому атому некое число, так называемую валентность, символизировавшую способность данного атома вступать в соединение с другими. Поначалу, впрочем, оставалось совершенно неясным — это и есть тот пункт, который нас занимает, — следует ли представлять себе валентность в виде направленной силы, геометрического свойства атома или как-нибудь иначе. На протяжении долгого времени нельзя было решить, являются ли сами атомы материальными телами или же они суть всего лишь вспомогательные геометрические образы, с помощью которых удобно математически отображать химические реакции. Говоря здесь о математическом отображении, имеют в виду, что символы и правила их связи, то есть в данном случае валентности и правила их комбинирования, изоморфны явлениям в том же смысле, в каком можно, например, сказать, пользуясь математическим языком теории групп, что линейные преобразования вектора изоморфны вращению в трехмерном пространстве. На практике, без математической терминологии, это означает: представление о валентности можно использовать для предсказания того, какие химические комбинации данных элементов возможны. Но обладает ли валентность еще и помимо этого некой реальностью, реальностью в том смысле, в каком могут считаться реальными сила или геометрическая форма, — этот вопрос долго оставался без ответа, его решение было не столь уже важным для химии.

Итак, несмотря на сложность химических реакций, внимание в первую очередь было направлено на анализ количественных соотношений, а всем прочим пренебрегали, то есть совершали процесс абстрагирования. В результате пришли к понятию, которое позволило единообразно интерпретировать и отчасти понять самые разнообразные химические реакции. Лишь много позже, а именно в новейшей атомной физике, выяснилось, какого рода реальность стоит за понятием валентности. И хотя мы до сих пор не в состоянии точно сказать, что, собственно, такое валентность — сила, электронная орбита, сгущение плотности электрического заряда атома или просто возможность чего-то в этом роде, — для современной физики эта неопределенность относится уже никак не к предмету, а только к языку, на котором мы говорим о нем и несовершенство которого мы в принципе не можем устранить.

От понятия валентности уже недалеко до того языка абстрактных формул, на котором говорит современная химия и который в любой ее области позволяет химику понять смысл и результат работы в любой отрасли химии.

Таким образом, стремление достигнуть единого и общего понимания выдвигает вопросы, которые ведут к образованию абстрактных понятий. Потоки информации, которую накапливают в наблюдениях и экспериментах биолог или химик, двигаясь в русле этих вопросов, в конечном счете вливаются в обширную сферу атомной физики. Создается поэтому впечатление, что физика занимает центральное положение в науке. Она должна быть всеобъемлющей, то есть указывать ту фундаментальную, единую для всего в природе структуру, с которой можно было бы соотнести все явления и на основе которой можно было бы упорядочить все феномены. Физика оказывается, таким образом, общим основанием и химии, и биологии. Но даже для самой физики это никоим образом не самоочевидно — прежде всего потому, что существует великое множество физических явлений, внутренняя связь которых ускользает от понимания. Поэтому нам придется коснуться теперь и развития физики. Для начала бросим взгляд на самые ранние его этапы.

Поделиться с друзьями: