Чтение онлайн

ЖАНРЫ

Шрифт:

QV

(n-5)/(n-1)

f(,,)ddd,

где Q — некоторая функция компонентов скорости (, , ), зависящая от рассматриваемого свойства, а V — относительная скорость двух соударяющихся молекул [18]. В частном случае (n = 5) V выпадает, и это выражение приводится к среднему значению Q тогда можно, например, доказать, что вязкость пропорциональна абсолютной температуре независимо от характера функции f [19]. Так как Максвелл полагал, что это действительно имеет место, то в дальнейших своих вычислениях он и принял функцию силы пятой степени. (Молекулы с взаимодействием этого типа теперь называют «максвелловскими».) Позже было показано экспериментально, что зависимость вязкости от температуры

более сложна, чем допускал Максвелл, и полное теоретическое объяснение потребовало определения функции распределения скоростей f для неоднородного газа, где максвелловское распределение справедливо только приближённо. За дальнейшей историей этого вопроса мы отсылаем читателя к монографии Чепмена и Коулинга [20].

Проследив в основных чертах развитие теории до того момента, когда она была радикально пересмотрена Максвеллом и Больцманом, мы перейдём теперь к реакции других учёных на эту теорию. Хотя отождествление теплоты с молекулярным движением было достаточно широко принято после 1850 г., по вопросу о строении молекул и их взаимодействиях были значительные разногласия. Вихревая теория атома, разработанная Ранкиным [21] и Гельмгольцем [22], была весьма популярна в этот период. Томсон (лорд Кельвин) допускал, что математическое развитие свойств этих атомов может доказать, что гельмгольцевы кольца являются истинными атомами.

«Вероятно, изящные исследования Д. Бернулли, Герапата, Джоуля, Крёнига, Клаузиуса и Максвелла относительно различных термодинамических свойств газов могут содержать все те положительные допущения, которые они были вынуждены сделать относительно сил взаимодействия между двумя атомами и кинетической энергии, приобретаемой отдельными атомами или молекулами, которым удовлетворяют вихревые кольца, не требуя никаких дополнительных свойств от вещества, движения которого составляет их, кроме инерции и несжимаемости в занимаемом ими пространстве. Полное математическое исследование взаимодействия между двумя вихревыми кольцами данных величин и скоростей, проходящих одно через другое по любым двум линиям, направленным так, что они никогда не сближаются более, чем на большое кратное число диаметров каждого, есть вполне разрешимая математическая задача; а новизна привходящих обстоятельств представляет трудности возбуждающего характера. Решение этой задачи будет основой предположенной повой кинетической теории газа» [23].

Таким образом, точка зрения Томсона являлась не столько оппозиционной к кинетической теории, сколько желанием, чтобы эта теория была разработана с иной точки зрения. Максвелл также поддерживал вихревую теорию, потому что она казалась обнадёживающей в отношении вывода закона внутриатомных сил из основных принципов.

«Если будет построена теория такого рода после преодоления огромных математических трудностей в этом вопросе, теория, которая будет представлять в какой-то степени действительные свойства молекул, то она будет занимать совершенно иное научное положение, чем те теории молекулярного действия, которые построены на том, что молекула наделяется произвольной системой центральных сил, придуманных исключительно для того, чтобы учесть наблюдаемые явления.

В вихревой теории нет ничего произвольного: ни центральных сил, ни таинственных свойств какого-либо другого рода. Мы не имеем ничего, кроме материи и движения, и вихрь, однажды приведённый в движение, обладает теми свойствами, которые были определены начальным импульсом, и никакие дополнительные предположения здесь невозможны.

Даже при современном неразработанном состоянии теории утверждение индивидуальности и неразрушимости кольцевого вихря в идеальной жидкости должно разрушить общепринятое мнение, что молекула должна представлять очень жёсткое тело для сохранения постоянства» [24].

Затем Максвелл рассматривает спектроскопическое доказательство того, что молекула может быть приведена в состояние внутреннего колебания и предсказывает:

«Тогда, если мы желаем получить эталоны длины, времени и массы, которые бы были абсолютно неизменными, мы должны искать их не в размерах или в движении или в массе нашей планеты, но в длине волн и периоде колебаний и в абсолютной массе неуничтожаемых и неизменных, идеально подобных молекул» [25].

Вихревой

атом пользовался значительной популярностью в течение многих лет, как способ визуализации атома, но математические исследования, предложенные Томсоном, никогда не были осуществлены. С другой стороны, надежды Томсона и Максвелла на вывод внутриатомных сил из более фундаментальной гипотезы относительно строения атомов были осуществлены в современной теории квантов.

Другая теория строения атомов была описана Цейнером:

«Наиболее широко распространён тот взгляд на строение тел, который рассматривает тело, как составленное из неизменных частиц, «атомов», расстояния которых друг от друга относительно велики... Эти атомы притягивают друг друга... Относительно большие промежутки между молекулами заполнены эфиром... Эфир окружает молекулы и атомы в виде атмосферы. Эти атмосферы, плотность которых уменьшается изнутри наружу, составляют вместе с ядром атома индивидуальное целое. Атом со своей оболочкой из эфира Редтенбахер называет «динамитом»... Только в одном пункте эти взгляды расходятся, а именно в вопросе о том, является ли причиной так называемого теплового движения движение атомов, т. е. материальных частиц тела, или движение эфирных частиц собранных в теле... Редтенбахер считал, что тепловое движение состоит из радиального движения эфирных оболочек, окружающих атомы или молекулы тела. Эти оболочки расширяются и сжимаются... Клаузиус защищал другую точку зрения, с далеко идущими следствиями...» [26].

Цейнер также указывал на то, что учёные, которые пишут по теории света, обычно начинают со сложных гипотез, между тем как те, которые пишут труды о теплоте, «редко начинают с предположения о специфическом роде теплового движения... Вообще в математических разработках избегали определённых предположений относительно природы движения, которое мы называем теплотой» [27].

Тиндаль в лекции от 1862 г. указывал, что «...идея относительно газовых частичек, которая в настоящее время о успехом поддерживается, это — идея, что частицы летят по прямым линиям сквозь пространство» [28].

В сноске он ссылается на Джоуля, Крёнига, Максвелла и Клаузиуса. Он рассматривает диффузию какого-либо благовония в комнате с точки зрения кинетической теории и производит эксперимент для иллюстрации поведения газов.

Но в 1863 г. в другой статье он, по-видимому, игнорирует кинетическую теорию: «...среда, таким образом, охватывает наши атомы; внутри нашей атмосферы находится вторая, более тонкая атмосфера, в которой атомы кислорода и азота как бы подвешены в виде зёрен... Мы не только должны представлять себе наши атомы, подвешенными в этой среде, но должны представлять себе их совершающими колебания в этой среде. В этом движении атомов и состоит то, что мы называем их теплотой. ...Мы должны представлять себе, что это движение сообщается среде, в которой атомы совершают колебания» [29].

Беркс в 1862 г. опубликовал книгу «О материи и эфире или тайна законов физического изменения». Рецензент «Philosophical Magazine» цитирует из этой книги следующий абзац:

«Теплота представляет собой просто атомную или молекулярную живую силу. Ощущаемая теплота зависит от колебаний твёрдых атомов, переносимых через отталкивания составляющего их или прилежащего эфира к соседним атомам... Теплота жидкости состоит из живой силы каждого атома при вращении его вокруг собственной оси с наибольшим моментом, причём полярность соседних атомов ослабляется или нарушается. Теплота парообразования состоит из живой силы, расходуемой или поглощаемой на отталкивание химических атомов на большее среднее расстояние за пределы максимальной силы сцепления».

Несмотря на подобие кинетической теории и других атомных теорий, которые были рассмотрены на страницах «Philosophical Magazine» прежде, рецензент говорит:

«Конечно, все эти многочисленные утверждения могут рассматриваться только как выражение личных представлений, соответствие которых физическим реальностям не доказано пи непосредственными объяснениями явлений, ни объяснениями, полученными путём математических рассуждений» [30].

Но в 1863 г. ещё два учёных поддержали кинетическую теорию. В Англии Томас Грехэм, указывая, как кинетическая теория объяснила его эксперименты по диффузии, писал:

Поделиться с друзьями: