Чтение онлайн

ЖАНРЫ

Ударно-разведывательный самолет Т-4
Шрифт:
empty-line/>

Сопло

Всережимное сверхзвуковое сопло имело площадки критического и выходного сечений, регулируемые с помощью трех рядов управляемых створок. Сопло с такой механизацией обеспечивало высокое значение коэффициента тяги на всех основных режимах.

Защита агрегатов от перегрева

Сверхвысокие скорости длительного полета заставили решать вопросы защиты всех агрегатов от высокой температуры окружающего воздуха (300-330°С), в то время как агрегаты могли надежно работать до 250°С.

Для защиты от перегрева все двигательные приводные агрегаты размещались

на одной коробке приводов, крепившейся в нижней части входного устройства двигателя. Специальный защитный контейнер из титанового листа с теплоизоляцией из базальтового волокна охватывал коробку и установленные на ней приводные и неприводные агрегаты.

Такая защита от внешнего воздействия плюс снятие тепла внутри контейнера циркулирующим топливом обеспечивали требуемый температурный режим.

Топливо и масло

Применяемые в то время топливо и масло не могли быть использованы. Их предельно допустимые температуры оказывались существенно ниже указанных в ТЗ. В связи с этим нефтехимической промышленности была поручена разработка нового синтетического масла, надежно работающего в маслосистеме двигателя при разогреве от 20°С до 350°С. Такое масло, с индексом ВТ-301, было создано.

В качестве топлива были приняты: ракетное горючее РГ-1, допускавшее нагрев до максимальной температуры 124°С и Т-6, с максимально допустимой температурой эксплуатации 180°С.

В связи с температурными ограничениями по маслу и топливу, выход за пределы которых чреват аварийными ситуациями, в систему управления в регулирования двигателя был включен агрегат перепуска топлива - АПТ-17, который:

– обеспечивал перепуск топлива из топливомасляного радиатора ФК на вход в топливный фильтр двигателя, исключая застой и перегрев топлива. После включения ФК, перепуск прекращался;

– при предельной температуре топлива на входе в двигатель увеличивалась его прокачка в самолетной топливной системе перепуском из первой ступени двигательного подкачивающего насоса (ДЦН-66А);

– при предельной температуре масла на выходе из двигателя включался перепуск топлива из форсажной секции топливомасляного радиатора в самолетный бак.

Агрегат и система перепуска топлива обеспечивали поддержание допустимого уровня температуры топлива и масла.

Двигатель РД36-41 был выполнен по одноконтурной прямоточной схеме. Он состоял из следующих основных узлов и агрегатов:

– компрессор с автоматически регулируемыми лопатками направляющих аппаратов с 1-ой по 5-ю и с 7-ой по 10-ю ступени;

– камеры сгорания трубчато-кольцевого типа;

– осевой двухступенчатой турбины с охлаждаемыми воздухом лопатками 1-ой ступени и сопловыми лопатками 1-ой и 2-ой ступеней;

– форсажной камеры с всережимным соплом, с регулированием критического и выходного сечений, обеспечивающим высокое значение коэффициента тяги на всех основных режимах работы;

– коробки приводов агрегатов;

– системы автоматического регулирования управления;

– воздушно-порохового стартера для запуска двигателя.

Двигатель был оборудован системами питания топливом и кислородом, управления и регулирования, запуска, смазки, суфлирования, зажигания, дренажа, охлаждения, антиобледенения, со всеми необходимыми приборами контроля.

Таблица 1.

Технические характеристики двигателя

Параметры Характеристики

Тяга двигателя, стендовая (Н=0; М=0) на режимах, кгс:

– максимальном 10850

– форсажном 16000

Удельный расход топлива, стендовый (Н=0; М=0) на режимах, кг/кгч:

– максимальном 0.88

– форсажном 1,9

Температура газа перед турбиной, град. С 1300

Температурные

режимы планера

При длительном сверхзвуковом полете на скорости при числе М=3 на высотах 21 - 24 км элементы конструкции планера нагревается до высокой температуры. Для обеспечения работоспособности планера при длительном воздействии высоких температур в его конструкции широко использовались новые термостойкие высокопрочные металлические сплавы и новые теплостойкие неметаллические материалы. В наиболее сложных температурных условиях работает конструкция мотоотсека. При длительной работе двигателя на форсажном режиме температура на защитном экране вокруг форсажной камеры достигает 525°С, а на нижней поверхности центроплана над двигательным отсеком 310°С. Внутренние поверхности воздухозаборника и воздушного канала ввиду отсутствия излучения нагреваются так же, как и стенки гондол двигателей. Максимальная температура носовой части фюзеляжа достигает 280°С, верхняя поверхность фюзеляжа нагревается до температуры 220°С, а нижняя - 230°С. Максимальная температура нижней поверхности гондолы составляет 300 - 320°С. Поверхность крыла нагревается до 220 - 230°С, при этом носки крыла нагреваются до 280°С. Температура, до которой нагревается поверхность переднего горизонтального оперения, выше, чем у крыла, и составляет 300°С.

Схема двигателя РД36-41 (Николай Гордюков)

1 - Корпус двигателя 2 - Компрессор 3 - Вал ротора 4 - Форсунки основной камеры 5 - Основная камера сгорания 6 - Турбина 7 - Форсажный топливный коллектор 8 - Форсажная камера 9 - Регулируемое сверхзвуковое сопло 10 - Створка сопла 11 - Коробка приводных агрегатов

При длительном полете нагреваются и внутренние элементы конструкции. Так, например, при полете с М=3 на высотах 20 - 24 км температура стенок лонжеронов крыла может превышать 200°С. Температура наружной поверхности остекления самолета достигала 230°С, а внутренней поверхности - 80°С. Для обеспечения работоспособности остекление фонаря было выполнено в виде двухкамерных стеклоблоков, состоящих из термостойких силикатных и органических стекол.

Максимальная температура топлива в крыльевых баках при длительном сверхзвуковом полете на скоростях, соответствующих М=3, и высотах, равных 20 - 24 км, к концу выработки достигала 60°С, в фюзеляжных баках топливо нагревалось до 50 - 100°С. Максимальная температура топлива в расходном баке доходит до 230°С.

Работы по самолету "103"

В соответствии с требованием технического задания, на борту самолета Т-4 необходимо было расположить две крылатые ракеты Х-45, что при выбранной аэродинамической компоновке самолета усложняло традиционное их размещение под крылом из-за увеличения аэродинамических нагрузок вследствие влияния мотогондолы. Это приводило к значительному увеличению веса подвесок, усложнению процесса отделения ракет от самолета и сложностям по размещению системы охлаждения ракет в тонком крыле. Учитывая перечисленные трудности, первый самолет "101" был оснащен одной ракетой, размещаемой по центру под мотогондолой.

Компоновка 2-х ракет под мотогондолой, предложенная и выполненная конструктором В.П. Терликовым, в дальнейшем нашла подтверждение своей жизнеспособности в результатах аэродинамических испытаний, выполненных в ЦАГИ конструктором Ю.А. Репревым, по отделению и исключению взаимного касания ракет при сбросе с самолета. Эта компоновка была реализована на самолете "103", предназначенном для отработки боевых задач самолета Т-4.

Размещение ракет под мотогондолой позволило расположить в переднем отсеке мотогондолы достаточно габаритные системы охлаждения ракет, а под мотогондолой и контейнеры с разведывательным оборудованием..

Поделиться с друзьями: