Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:
Последний шаг состоит в определении того, насколько изменится площадь горизонта. Для чёрной дыры солнечной массы прирост площади горизонта составляет около 10– 70 квадратного метра. Это очень малая величина, но опять, «это больше, чем ничто». И не просто больше, чем ничто, а нечто совершенно особое: 10– 70 м2, оказывается, как раз равняется одной квадратной планковской единице.
Это случайное совпадение? Что получится, если взять чёрную дыру земной массы (размером с клюквину) или чёрную дыру в миллиард раз массивнее Солнца? Попробуйте — с числами или с формулами. Каков бы ни был исходный размер чёрной дыры, всегда выполняется правило:
Добавление одного бита информации увеличивает площадь горизонта любой чёрной
Каким-то образом в принципах квантовой механики и общей теории относительности скрыта загадочная связь между невидимыми битами информации и кусочками площади планковского размера.
Когда я объяснил всё это на своём подготовительном курсе по физике в Стэнфорде, кто-то на заднем ряду протяжно присвистнул и произнёс: «Кру-у-уто». Это действительно круто, а ещё глубоко и, вероятно, содержит ключ к загадке квантовой гравитации.
Теперь представьте формирование чёрной дыры бит за битом, так же как можно наполнять ванну атом за атомом. Каждый раз при добавлении бита информации площадь горизонта прирастает на одну планковскую единицу. К тому времени, когда чёрная дыра будет готова, площадь её горизонта окажется равной общему числу битов скрытой в ней информации. Так что главное достижение Бекенштейна можно суммировать тезисом:
Энтропия чёрной дыры, измеренная в битах, пропорциональна площади её горизонта, измеренной в планковских единицах.
Или, ещё более кратко:
Информация равна площади.
Это выглядит почти так, как если бы горизонт был плотно покрыт несжимаемыми битами информации; сходным образом можно плотно покрывать столешницу монетами.
При добавлении новых монет площадь, занятая всеми монетами вместе, будет расти. Биты, монеты — принцип один и тот же.
Единственная проблема с этой иллюстраций заключается в том, что на горизонте нет монет. Будь они там, Алиса обнаружила бы их, падая в чёрную дыру. Согласно общей теории относительности, для свободно падающей Алисы горизонт — это невидимая точка невозврата. Сама возможность для неё встретить что-то вроде стола с монетами прямо противоречит эйнштейновскому принципу эквивалентности.
Этот конфликт — очевидная несовместимость между представлением о горизонте как о поверхности, плотно заполненной материальными битами, и как о точке невозврата — и стал казус белли для Битвы при чёрной дыре.
Другой момент, озадачивающий физиков с момента открытия Бекенштейна: почему энтропия пропорциональна площади горизонта, а не внутреннему объёму чёрной дыры? Кажется, что внутри пропадает огромное количество места. Фактически чёрная дыра ужасно похожа на Птолемееву библиотеку. Мы ещё вернёмся к этому вопросу в главе 18, где увидим, что весь мир — это голограмма.
Хотя Бекенштейн пришёл к правильному выводу — энтропия чёрной дыры действительно пропорциональна площади, его доказательство не было идеально строгим, и он об этом знал. Он не говорил, что энтропия равна площади, измеренной в планковских единицах. Из-за ряда неопределённостей в его выкладках он мог лишь утверждать, что энтропия чёрной дыры примерно равна (или пропорциональна) её площади. В физике слово «примерно» — очень ненадёжное. Означает оно удвоенную площадь или четверть площади? Хотя доказательство Бекенштейна и было блестящим, оно не позволяло точно определить коэффициент пропорциональности.
В следующей главе мы увидим, как открытие Бекенштейном энтропии чёрных дыр привело Стивена Хокинга к величайшему озарению: чёрные дыры обладают не только энтропией, как совершенно верно догадался Бекенштейн, но у них также есть и температура. Это не бесконечно холодные, мёртвые объекты, какими физики их себе представляли. Чёрные дыры высвечивают свою внутреннюю теплоту, но в итоге эта теплота приводит к их гибели.
9
Чёрный свет
Зимний ветер отвратителен в больших городах. Он свищет вдоль длинных улиц между плоскими фасадами домов, завихряется вокруг углов, безжалостно бичуя несчастных пешеходов. В один ненастный день в 1974 году я отправился на длинную пробежку по обледенелым улицам Манхэттена. Пар от дыхания оседал сосульками на моих длинных волосах. Пробежав пятнадцать миль, я совершенно
выдохся, но до тёплого офиса, к сожалению, оставалось ещё две мили. Без кошелька у меня не было даже двадцати центов, чтобы сесть на метро. Но тут мне улыбнулось счастье. Когда я сошёл с тротуара где-то в районе Дикманстрит, рядом остановился автомобиль, и из него высунулась голова Оге Петерсена. Прелестный датчанин Оге, до того как перебраться в Соединённые Штаты, был ассистентом Нильса Бора в Копенгагене. Он обожал квантовую механику и жил и дышал боровской философией.В машине Оге спросил, не иду ли я на лекцию Денниса Скиамы в Белферской школе? Я и не думал. На самом деле я ничего не знал о Скиаме и его лекции. Все мои мысли были о тарелке супа в университетском кафетерии. Оге познакомился со Скиамой в Англии и сказал, что это чрезвычайно забавный англичанин из Кембриджского университета, от которого можно ждать массы отличных шуток. Оге считал, что лекция Скиамы будет иметь отношение к чёрным дырам — об одной работе, выполненной его студентом, гудит весь Кембридж. Я пообещал Оге, что появлюсь.
Кафетерий университета Ешива не был местом в моём вкусе. Еда неплохая — суп был кошерным (что меня совершенно не волновало) и горячим (вот это было важно), однако разговоры между студентами меня тяготили: почти все они были о законе. Не о федеральном законе, не о законах штата или города и не о научных законах, это была мелочная казуистика, касающаяся талмудического закона, который занимал молодых студентов Ешивы: будет ли кошерной пепси-кола, если она произведена на заводе, который построен на месте бывшей свинофермы? А если земля была покрыта фанерой перед строительством завода? Такого рода были вопросы. Но горячий суп и холодная погода склонили меня к тому, чтобы расслабиться и послушать студентов за соседним столом. На этот раз разговор зашёл о предмете, о котором даже я иногда забочусь, — о туалетной бумаге! Ожесточённая талмудическая полемика разгорелась вокруг исключительно важного вопроса: можно ли в шабат заменять в держателе рулон с туалетной бумагой или надо использовать бумагу прямо от неподвешенного рулона? Одна фракция, цитируя труды Рабби Акивы, высказывала предположение, что этот великий человек настаивал бы на строгом подчинении определённым законам, которые запрещают замену рулона. Другая фракция считала, что несравненный Рамбам [74] очень ясно выразил в «Путеводителе растерянных», что некоторые необходимые работы исключаются из талмудических запретов, а логический анализ склоняет к тому выводу, что замена туалетной бумаги является одной из таких работ. Спустя полчаса дискуссия всё ещё сохраняла остроту. В сражение вступили ещё несколько молодых будущих раввинов с новыми весьма искусными, почти математическими аргументами, и я наконец, устал от этой полемики.
74
Рамбам — это прозвище Рабби Моше бен Маймона, который в нееврейском мире больше известен как Маймонид.
Вас может удивить, какое отношение всё это имеет к теме данной книги, к чёрным дырам. Лишь одно: из-за отдыха в кафетерии я пропустил первые сорок минут блестящей лекции Денниса Скиамы.
Кембриджский университет, где Скиама был профессором астрономии и космологии, являлся одним из трёх мест (помимо Принстона и Москвы [75] ), где лучшие из лучших пробовали силу своего интеллекта на величайших загадках гравитации. Как и в Принстоне, его молодых интеллектуальных воинов возглавлял харизматичный вдохновенный лидер. Мальчики Скиамы были звёздной командой блестящих молодых физиков, в число которых входили Брэндон Картер, сформулировавший антропный принцип в космологии, сэр Мартин Рис, королевский астроном Великобритании, занимающий ныне кафедру сэра Эдмонда Галлея (чьё имя носит комета Галлея), Филип Канделас, ныне занимающий кафедру математики имени Роуза Болла в Оксфорде, Дэвид Дойч, один из изобретателей квантовых вычислений, и Джон Барроу, выдающийся кембриджский астроном. Ах да, был ещё Стивен Хокинг, который ныне занимает кафедру Исаака Ньютона в Кембридже. На самом деле в тот холодный день 1974 года Деннис рассказывал именно о работе Стивена, но тогда имя Стивена Хокинга ничего для меня не значило.
75
Великий гравитационный центр в Москве возглавлялся легендарным российским астрофизиком и космологом Яковом Зельдовичем.