Большая книга занимательных наук
Шрифт:
потому что оно сводится к построению правильного 64-угольника.
Как видим, иррациональный множитель, входящий в данное алгебраическое выражение, не всегда делает это выражение невозможным для построения циркулем и линейкой. Неразрешимость квадратуры круга кроется не только в том, что число π – иррациональное, а в другой особенности этого же числа. Именно, число π – не алгебраическое, т. е. оно не может быть получено в итоге решения какого бы то ни было алгебраического уравнения с рациональными коэффициентами. Такие числа называются трансцендентными.
Французский математик XVI столетия Вьета доказал, что число
Это
Итак, неразрешимость задачи о квадратуре круга обусловлена трансцендентностью числа π, т. е. тем, что оно не может получиться в итоге решения алгебраического уравнения с рациональными коэффициентами. Эта особенность числа π была строго доказана в 1882 г. немецким математиком Линдеманом. В сущности, названный ученый и должен считаться единственным человеком, разрешившим квадратуру круга, несмотря на то, что его решение – отрицательное: оно утверждает, что искомое построение геометрически невыполнимо. Таким образом, в 1882 г. завершаются многовековые усилия математиков в этом направлении, но, к сожалению, не прекращаются бесплодные попытки многочисленных любителей, недостаточно знакомых с историей задачи.
Так обстоит дело с задачей о квадратуре круга в теории. Что касается практики, то она вовсе не нуждается в точном разрешении этой знаменитой задачи. Убеждение многих, что положительное разрешение проблемы о квадратуре круга имело бы огромное значение для практической жизни, – глубокое заблуждение. Для потребностей обихода вполне достаточно располагать хорошими приближенными приемами решения этой задачи.
Практически поиски квадратуры круга стали бесполезны с того времени, как найдены были первые 7–8 верных цифр числа π. Для потребностей практической жизни вполне достаточно знать, что π = 3,1415926. Никакое измерение длины не может дать результата, выражающегося более чем семью значащими цифрами. Поэтому брать для π более восьми цифр – бесполезно: точность вычисления от этого не улучшается [55] . Если радиус выражен семью значащими цифрами, то длина окружности не будет содержать более семи достоверных цифр, даже если взять для я сотню цифр. То, что старинные математики затратили огромный труд для получения возможно более «длинных» выражений для π, никакого практического смысла не имеет. Да и научное значение этих трудов ничтожно.
55
См. «Занимательную арифметику» Я.И. Перельмана.
Это – попросту дело терпения. Если у вас есть охота и достаточно досуга, вы можете отыскать хоть 1000 цифр для π , пользуясь, например, следующим бесконечным рядом, найденным Лейбницем [56] :
Но это будет никому не нужное арифметическое упражнение, нисколько не изменяющее уже полученного решения знаменитой геометрической задачи.
Упомянутый ранее французский астроном Араго писал по этому поводу следующее:
56
Терпения для такого расчета потребуется очень много, потому что для получения, например, шестизначного п понадобилось бы взять в указанном ряду ни много ни мало —
«Искатели квадратуры круга продолжают заниматься решением задачи, невозможность которого ныне положительно доказана и которое, если бы даже и могло осуществиться, не представило бы никакого практического интереса. Не стоит распространяться об этом предмете: больные разумом, стремящиеся к открытию квадратуры круга, не поддаются никаким доводам».
Араго иронически заканчивает:
«Академии всех стран, борясь против искателей квадратуры, заметили, что болезнь эта обычно усиливается к весне».
Треугольник Бинга
Рассмотрим одно из приближенных решений задачи
о
квадратуре круга, очень удобное для надобностей практической жизни.Способ состоит в том, что вычисляют угол а (рис. 17), под которым надо провести к диаметру АВ хорду АС = х, являющуюся стороной искомого квадрата. Чтобы узнать величину этого угла, придется обратиться к тригонометрии:
где r — радиус круга.
Значит, сторона искомого квадрата x = 2r cos α, площадь же его равна 4 r 2cos2α. С другой стороны, площадь квадрата равна r 2 – площади данного круга.
Следовательно,
4 r 2cos2α = π r 2,
откуда
По таблицам находим:
a = 27°36′.
Итак, проведя в данном круге хорду под углом 27°36′ к диаметру, мы сразу получаем сторону квадрата, площадь которого равна площади данного круга. Практически для этого заготовляют чертежный треугольник (этот удобный способ был предложен в 1836 г. русским инженером Бингом; упомянутый чертежный треугольник носит по имени изобретателя название «треугольник Бинга»), один из острых углов которого 27°36′ (а другой – 62°24′). Располагая таким треугольником, можно для каждого данного круга сразу находить сторону равновеликого ему квадрата.
Рис. 17. Способ русского инженера Бинга (1836 г.)
Для желающих изготовить себе такой чертежный треугольник полезно следующее указание.
Так как тангенс угла 27°36′ равен 0,523, или
, то катеты такого треугольника относятся, как 23:44. Поэтому, изготовив треугольник, один катет которого, например, 22 см, а другой 11,5 см, мы будем иметь то, что требуется. Само собой разумеется, что таким треугольником можно пользоваться и как обыкновенным чертежным.
Тоньше паутины, но крепче стали
Поперечный разрез нити, проволоки, даже паутины, как бы мал он ни был, все же имеет определенную геометрическую форму, чаще всего форму окружности. При этом диаметр поперечного сечения или, будем говорить, толщина одной паутины составляет примерно 5 микронов
мм. Есть ли что-нибудь тоньше паутины? Кто самая искусная «тонкопряха»? Паук или, может быть, шелковичный червь? Нет. Диаметр нити натурального шелка – 18 микронов, т. е. нить в З1/2 раза толще одной паутины.
Люди издавна мечтали о том, чтобы своим мастерством превзойти искусство паука и шелковичного червя. Известна старинная легенда об изумительной ткачихе, гречанке Арахнее. Она в таком совершенстве овладела ткацким ремеслом, что ее ткани были тонки, как паутина, прозрачны, как стекло, и легки, как воздух. С ней не могла соперничать даже сама Афина – богиня мудрости и покровительница ремесел.
Эта легенда, как и многие другие древние легенды и фантазии, в наше время стала былью. Искуснее Арахнеи оказались инженеры-химики, создавшие из обыкновенной древесины необычайно тонкое и удивительно прочное искусственное волокно. Шелковые нити, полученные, например, медноаммиачным промышленным способом, в 21/2 раза тоньше паутины, а в прочности почти не уступают нитям натурального шелка. Натуральный шелк выдерживает нагрузку до 30 кг на 1 кв. мм поперечного сечения, а медноаммиачный – до 25 кг на 1 кв. мм.
Любопытен способ изготовления медноаммиачного шелка. Древесину превращают в целлюлозу, а целлюлозу растворяют в аммиачном растворе меди. Струйки раствора через тонкие отверстия выливают в воду, вода отнимает растворитель, после чего образующиеся нити наматывают на соответствующие приспособления. Толщина нити медноаммиачного шелка – 2 микрона. На 1 микрон толще ее так называемый ацетатный, тоже искусственный, шелк. Поразительно то, что некоторые сорта ацетатного шелка крепче стальной проволоки! Если стальная проволока выдерживает нагрузку в 110 кг на один квадратный миллиметр поперечного сечения, то нить ацетатного шелка выдерживает 126 кг на 1 кв. мм.