Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (СО)
Шрифт:

Значительное внимание уделялось развитию медицины. В 1901 учрежден Рокфеллеровский институт медицинских исследований, в 1905 — Медицинская лаборатория. В 1904 А. Каррель разработал высокоэффективные методы сшивания кровеносных сосудов; ему же принадлежат труды по экспериментальной трансплантации органов (Нобелевская премия, 1912). Дж. Уипл, Дж. Майнот и У. Мёрфи в 1926 предложили метод лечения пернициозной анемии (Нобелевская премия, 1934). У. Кеннон создал теорию гомеостаза (1929). Важное значение для медицины имели открытие (1936) и лечебное применение кортизона (Э. Кендалл и Ф. Хенч; Нобелевская премия, 1950).

Биологические исследования развивались под влиянием работ Т. Моргана (Нобелевская премия, 1933; иностранный почётный член АН СССР с 1932), К. Бриджеса, Г. Мёллера, А. Стёртеванта, заложивших основы хромосомной теории наследственности. В то же время открытия в области генетики послужили основой синтеза ранее разобщённых теоретических и прикладных исследований в области биологических наук. В частности, достигнутые в 10—20-е гг. успехи в выведении гибридов кукурузы и др. с.-х. культур позволили резко увеличить их урожайность. Опыты Мёллера по индуцированию мутаций рентгеновскими лучами (1927; Нобелевская премия, 1946) привели к созданию радиационной генетики. В области экологии растений в 20—30-е гг. выделялись работы Ф. Клементса и его школы. Были избраны иностранный член-корреспондент АН СССР биологи Г. Осборн (1923), Г. Нил (1924), иностранными почётными членами АН СССР Ч. Уолкотт (1925), Л. Хоуард (1930).

Развитие естественных и технических наук с 30-х гг. 20 в. В 1929—33 в связи с экономическим кризисом произошло

некоторое сокращение научных исследований. Последовавшее за кризисом усиление централизации производства и капитала сопровождалось ростом заинтересованности монополий в научных исследованиях и основанием новых частных фондов, в том числе наиболее крупного из них — фонда Форда (основан в 1936), а также фондов Келлога (1930), Слоуна (1934) и др. Увеличилось государственное субсидирование науки. После 1933 в США из Европы иммигрировали бежавшие от фашистских режимов выдающиеся учёные: Х. Бете, Н. Бор, К. Гёдель, Л. Силард, Э. Ферми, О. Штерн, А. Эйнштейн и многие др., сыгравшие значительную роль в развитии американской науки. Это обстоятельство способствовало тому, что ко времени вступления США во 2-ю мировую войну 1939—45 (декабрь 1941) научный потенциал страны повысился прежде всего в области фундаментальных наук, особенно физики.

В 30—40-е гг. в математике большую известность получили работы Дж. Неймана по функциональному анализу, теории игр и математической физике, К. Гёделя по математической логике и теории множеств, Н. Винера по математическому анализу, теории вероятностей, теории электрических сетей, кибернетике. Проблемы прочности, устойчивости и вибрации разрабатывал С. П. Тимошенко (иностранный член-корреспондент АН СССР с 1928). Основные идеи теории информации были сформулированы в работах К. Шеннона. Вопросы звёздной спектроскопии и эволюции звёзд исследовались О. Струве. Изучению космических лучей были посвящены работы А. Комптона, Р. Милликена, а также К. Андерсона, открывшего в космических лучах позитроны (1932; Нобелевская премия, 1936) и мюоны (1936; совместно с С. Неддермейером). В 40-е гг. Нобелевские премии по физике получили: П. Бриджмен за исследования по физике высоких давлений (1946), О. Штерн за открытие магнитного момента протонов (1943), И. Раби за разработку резонансного метода определения магнитного момента протонов и дейтронов (1944). Р. Оппенгеймер и М. Филлипс в 30-е гг. дали объяснение реакций, происходящих при соударении дейтронов с атомным ядром. Большое значение для развития атомной физики имело появление ускорителей заряженных частиц. В 1930 Э. Лоуренс (иностранный почётный член АН СССР с 1942) предложил идею циклотрона и создал его модель (Нобелевская премия, 1939), в 1940 Д. Керст построил бетатрон. В 1945 Э. Макмиллан (несколько позже, чем В. И. Векслер в СССР) разработал идею автофазировки, на основе которой были построены синхротроны и др. типы резонансных ускорителей. В 1932 Г. Юри спектрально открыл дейтерий (Нобелевская премия, 1934). Г. Льюис в 1933 получил (совместно с Р. Макдональдом) тяжёлую воду и выделил в чистом виде дейтерий. В 1939 был выделен тритий (Л. Альварес; Нобелевская премия, 1968, за исследования в области элементарных частиц). У. Ф. Джиок разработал методы измерения сверхнизких температур и изучения термодинамических свойств веществ при сверхнизких температурах (Нобелевская премия, 1949). Л. Полингу (иностранный почётный член АН СССР с 1958) принадлежат фундаментальные труды по природе химической связи (Нобелевская премия в области химии, 1954; Нобелевская премия мира, 1962). Э. А. Дойзи вскрыл химическую природу ряда гормонов, антибиотиков и витаминов (Нобелевская премия, 1943). Способность ферментов к кристаллизации была открыта Дж. Самнером (Нобелевская премия, 1946), Дж. Нортроп и У. Стэнли разработали способ получения химически чистых ферментов и вирусных белков (Нобелевская премия, 1946). А. Винер и К. Ландштейнер в 1940 открыли резус-фактор у человека. К. и Г. Кори исследовали углеводный обмен у животных (Нобелевская премия 1947). Из культур микроорганизмов были выделены в чистом виде антибиотики: тиротрицин — Р. Дюбо, 1939; стрептомицин — З. Ваксман, 1944 (Нобелевская премия, 1952). Исследования проблем биологического развития в трудах ботаников Э. Синнотта, Дж. Стеббинса, зоологов Т. Добжанского, Э. Майра, Дж. Симпсона, А. Стёртеванта и др. способствовали объединению хромосомной генетики с проблематикой филогенеза и экологии популяций и созданию синтетической теории эволюции. В начале 30-х гг. Н. Л. Боуэн, Х. Йодер, С. Тилли и др. выступили с гипотезой существования одной базальтовой магмы; начались экспериментальные исследования происхождения различных магматических и метаморфических пород. Развитию нефтяной геологии способствовали труды Ф. Смита, П. Траска, Ф. Ван-Тайла, А. Леворсена, Дж. Ханта и др. Проведены исследования по географии почв (К. Ф. Марбут и др.), климатологии (Г. Ландсберг и др.). В 1933 «Администрация долины Теннесси» разработала комплексную научную программу, в ходе выполнения которой на территории около 100 тыс. км2 проведены ресурсоведческие, гидрологические, агрономические и экологические наблюдения.

Принципиально новые направления появились в сфере прикладных исследований и разработок. В 1931—32 создан иконоскоп — первая передающая телевизионная трубка с накоплением электрических зарядов (В. К. Зворыкин); в 1945— 1946 построена первая электронная цифровая вычислительная машина. В 1931 разработан способ получения хлоропренового каучука (промышленное производство с 1942), в 1937 — найлона (У. Карозерс, промышленное производство с 1939). Широко велись работы военного значения: по получению высокооктанового горючего, усовершенствованию термических и химических методов обработки брони, самолётостроению (1939—41 — однороторные вертолёты И. Сикорского; 1942 — полёт первого в США самолёта с турбореактивным двигателем). Исследования в области авиации, развёрнутые в 40-е гг., привели впоследствии к созданию в США обширного парка разнообразных по типам и назначению самолётов. В годы 2-й мировой войны крупнейшие научные силы США (в т. ч. Альварес, Комптон, Лоуренс, Оппенгеймер, Юри и др., а также Силард, Фермп и ряд др. физиков-иммигрантов из европейских стран) участвовали в проекте «Манхаттан» — разработке атомных реакторов (первый пущен в 1942) и атомной бомбы (1945).

После войны милитаризация науки и техники усилилась. Продолжалась разработка ядерного оружия. В 1954 была взорвана водородная бомба. Активизировались исследования в области химических, бактериологических и др. видов оружия массового уничтожения. Развернулись работы по ракетной технике, на развитие которых оказал влияние захват американскими войсками ведущих немецких специалистов во главе с В. фон Брауном. Из разгромленной Германии были вывезены тысячи специалистов и свыше 1 млн. запатентованных и незапатентованных изобретений по всем отраслям науки и техники.

Исследовательские работы ведутся практически во всех областях и направлениях современной науки и техники. Нобелевские премии по физике получили: Ф. Блох и Э. Пёрселл за открытие ядерного магнитного резонанса в твёрдых телах (1952), У. Лэмб за обнаружение сдвига уровней энергии в спектрах атомов водорода и дейтерия (1955), П. Куш за измерение магнитного момента электрона (1955), Э. Сегре и О. Чемберлен за экспериментальное открытие антипротона (1959), Д. Глазер за разработку пузырьковой камеры (1960), Р. Хофстедтер за определение формы и размера нуклонов (1961), М. Гёпперт-Майер за создание оболочечной модели ядра (1963), Ю. Вигнер за исследование ядерных взаимодействий (1963), Ю. Швингер и Р. Фейнман за работы по основам квантовой электродинамики (1965), Х. Бете за исследования источников внутризвёздной термоядерной энергии (1967), М. Гелл-Ман за труды по систематике элементарных частиц (1969), Дж. Бардин, Л. Купер, Дж. Шриффер за развитие теории сверхпроводимости (1972), А. Джайевери Л. Эсаки за исследования туннельного эффекта (1973). В 1948 Дж. Бардин, У. Браттейн, У. Шокли создали первый транзистор (Нобелевская прнмия, 1956). Широкое применение получили новые типы быстродействующих ЭВМ. В 1955 Ч. Таунс (одновременно с А. М. Прохоровым и Н. Г. Басовым в СССР) создал первый молекулярный квантовый генератор (Нобелевская премия, 1964). В 1955 построена первая подводная лодка с атомным реактором, в 1960 атомное товаро-пассажирское судно, в 1957 (на 3

года позже, чем в СССР) атомная электростанция. Нобелевские премии в области химии получили: Э. Макмиллан и Г. Сиборг за открытие и исследование трансурановых элементов (1951), У. Либби за разработку радиоуглеродного метода определения абсолютного возраста органических остатков и археологических образцов (1960), Р. Вудворд за синтез биологически важных органических соединений (1965), Р. Малликен за исследования химической связи методом молекулярных орбиталей (1966), Л. Онсагер за вклад в термодинамику необратимых процессов (1968), П. Флори за исследования растворов полимеров (1974). Нобелевские премии получили биохимики: Ф. Липман (1953), С. Очоа и А. Корнберг (1959), К. Анфинсен, С. Мур, У. Стайн (1972) за исследования химии и механизма действия ферментов, В. Дю Виньо (1955) и Э. Сазерленд (1971) за синтез и изучение механизма действия гормонов, Дж. Эдельман за открытия в иммунологии (1972), М. Калвин за исследования химизма фотосинтеза (1961), К. Блох за изучение биосинтеза холестерина и жирных кислот (1964); в области молекулярной биологии Нобелевские премии получили: Дж. Бидл и Э. Тейтем за исследования генетического регулирования биохимических процессов (1958), Дж. Ледерберг за работы по генетике бактерий (1958), Дж. Уотсон за раскрытие молекулярной структуры ДНК (1962), Х. Корана, М. Ниренберг, Р. Холли за расшифровку генетического кода (1968), Дж. Паладеи К. Дуве за работы по структуре и функции клетки (1974), Дж. Эндерс, Т. Уэллер, Ф. Роббинс (1954) и М. Дельбрюк, А. Херши, С. Лурия (1969) за исследования вирусов. Химизм проведения нервного импульса был исследован Дж. Аксельродом (Нобелевская премия, 1970), продолжившим работы Г. Гассера и Дж. Эрлангера (Нобелевская премия, 1944). В области медицины Нобелевские премии получили: М. Тейлер за исследование вируса жёлтой лихорадки и создание вакцины против неё (1951), Д. Ричардс и А. Курнан за разработку метода катетеризации сердца (1956), Ч. Хаггинс и Ф. Роус за исследования по проблеме рака (1966), Д. Бекеши (1961) за работы по физиологии слуха, Х. Хартлайн и Дж. Уолд (1967) за работы по физиологии зрения. Важное значение в связи с возрастающим промышленным загрязнением и нерациональным использованием природных ресурсов придаётся исследованиям в области охраны природы и экологии человека (Д. Медоус и др., «Пределы роста», 1972).

С конца 40-х гг. развернулось комплексное изучение Мирового океана. Г. Стомл предложил (1955) новую теорию морских течений и общей циркуляции вод океанов; известность получил его труд о Гольфстриме (1963). Изучаются минеральные богатства океана (Д. Л. Меро и др.), ведутся исследования по морской геологии (Г. У. Менард, Ф. П. Шипард, Б. К. Хейзен, М. Юинг и др.), химии океана (Д. Э. Фишер, Р. Х. Флеминги др.), биологии океана (Дж. Д. Айзекс, В. М. Чапмен и др.). В течение Международного геофизического года произведена съёмка и составлен полный атлас Атлантического океана.

Проводятся обширные космические исследования. В 1958 запущен первый американский ИСЗ; в 1962 Дж. Гленн совершил первый в США орбитальный полёт; в результате осуществления программы «Аполлон»в 1969 Н. Армстронг и Э. Олдрин впервые совершили посадку и выход на Луну (всего по программе «Аполлон» совершено 9 пилотируемых полётов к Луне, в том числе 6 с выходом на её поверхность); запускаются автоматические межпланетные станции к Марсу, Венере, Меркурию, Юпитеру, Сатурну (см. «Маринер», «Пионер»); проведена серия работ (со сменой экипажей) на орбитальной станции «Скайлэб», ведётся разработка транспортных космических кораблей многоразового использования и др. (см. Космонавтика). Получена новая информация о Венере, Марсе, Юпитере; составлены специальные карты поверхности Луны, с помощью инструментальных исследований изучены плотность, состав и происхождение её коры. В 1975 осуществлен первый совместный полёт со стыковкой на околоземной орбите советского и американского космических кораблей «Союз» и «Аполлон» по программе ЭПАС. Выполняются различные комплексные долговременные проекты (программы), требующие для осуществления участия большого числа организаций и специалистов многих профилей. Кроме космического проекта «Аполлон», к ним относятся программы арктических, глобальных атмосферных, океанографических исследований, амер. часть Международной биологической программы, проекты, предназначенные для развивающихся стран, — выведение в 60-х гг. высокоурожайных сортов зерновых культур, т. н. зелёная революция (Н. Борлоуг, Нобелевская премия мира, 1970) и др. Ведутся комплексные исследования по программе глубоководного океанического бурения (научно-исследовательское судно «Гломар Челленджер»). Получен материал для решения вопросов о строении осадочного слоя океанической земной коры, о планетарной биостратиграфической корреляции и геологической истории океанов. Разрабатывается «новая глобальная тектоника». В связи с энергетическим кризисом с 1974 началось осуществление проекта «Независимость», цель которого — удовлетворение в 80-х гг. энергетических потребностей страны за счёт собственных ресурсов. Полная стоимость научно-исследовательских и др. работ по этому проекту свыше 20 млрд. долл., из которых около 25% ассигнуется на работы по добыче и использованию (газификация и гидрогенизация) угля, около 22% — по ядерной энергетике, главным образом по созданию реакторов-размножителей на быстрых нейтронах (жидкометаллических и газовых), около 20% — по разведке, добыче и использованию нефти и природного газа, около 17,5% — по эффективному использованию энергоресурсов (совершенствование энергосетевого оборудования, передача электроэнергии, разработка МГД-генераторов и высокотемпературных газовых турбин и др.), около 11% — по использованию термоядерной, геотермальной, солнечной и др. видов энергии.

Б. А. Старостин.

Научные учреждения. Научно-исследовательские и опытно-конструкторские работы (НИОКР) проводят свыше 11 тыс. частных фирм, главным образом промышленных; около 700 учреждений федерального правительства; 400 частных и полугосударственных НИИ т. н. бесприбыльного типа; большинство государственных и частных высших учебных заведений, среди которых около 600 осуществляют исследования по естественным, точным и техническим наукам. В 1972 насчитывалось 769 национальных научных и технических обществ (вузы и общества также имеют статус некоммерческих научных организаций, т. е. формально обязаны обращать свои не облагаемые налогом доходы, например получаемые от выполнения заказов на НИОКР, только на развёртывание деятельности в сфере науки и образования; фактически деятельность подобных организаций подчинена законам функционирования капитала и производству прибыли).

Для программ НИОКР характерна практическая направленность и упор на промышленное освоение их результатов: из всех расходов (34 млрд. долл. в 1975, оценка) 12% идёт на фундаментальные, 23% — на прикладные исследования, 65% — на опытно-конструкторские и технологические разработки. Средний срок выполнения крупных программ по решению принципиально новых научно-технических проблем — 5—10 лет, а по созданию новых промышленных товаров на базе известных или видоизменённых принципов — до 2—3 лет. Противоречия капиталистической организации и эксплуатации науки, связанные с её подчинённостью целям извлечения прибыли, стихией рынка, дублированием программ, их милитаризацией, инфляцией, безработицей, снижают рациональное развитие и использование научных ресурсов; по мнению ряда американских экспертов, более половины научно-технических программ крупных компаний не завершается коммерческим успехом. Тем не менее наука считается важным фактором экономического роста, вложения в промышленные НИОКР обычно окупаются за 3—5 лет и дают высокие прибыли. Каждые 4 года продукция отраслей обрабатывающей промышленности обновляется на 15—20%, повышение научно-технического уровня производства обусловливает до 75% прироста производственных мощностей промышленности и не менее половины прироста валового национального продукта. Важное значение придаётся совершенствованию научно-технической информации; государственные, частные и университетские информационные службы хорошо оснащены, на них расходуются сотни млн. долл., однако в единую национальную систему научно-технической информации они не интегрированы. Современная структура организации науки характеризуется ростом многообразных форм государственно-монополистического регулирования, развивающихся на базе ускоряемых научно-технической революцией процессов капиталистического обобществления производства.

Поделиться с друзьями: