Числа - основа гармонии. Музыка и математика
Шрифт:
* * *
Глава 4
Биты и волны
Музыка — арифметика звуков, подобно тому как оптика — геометрия света.
Клод Дебюсси
Мы предлагаем читателю подробнее познакомиться с различными параметрами звуков и глубже изучить их природу. Если мы хотим рассматривать звук не как художественное, а как физическое явление, то нам потребуются математические инструменты. Мы совершим путешествие в микромир и изучим потоки электронов в электрических цепях, чтобы понять, как передается звуковая информация.
Физика звука
Благодаря особенностям нашего слуха мы можем различать высоту звуков, которая связана с частотой
Вне зависимости от источника звука волна в конечном итоге распространяется по воздуху и достигает наших ушей. Распространение волны вызвано чередованием областей сжатия и разрежения воздуха. Именно эти чередования наши уши воспринимают как звук. Если области сжатия и разрежения чередуются равномерно, то звуковые колебания называются гармоническими. Скорость, с которой чередуются области сжатия и разрежения, называется частотой. Частота равняется числу колебаний в секунду и измеряется в герцах. Чем больше частота колебаний, тем выше звук.
При распространении звуковых колебаний среда изначально находится в состоянии покоя, затем постепенно достигается максимальная амплитуда колебаний (А), после чего среда снова стремится к состоянию покоя, из которого снова набирает максимальную амплитуду (—А). При возвращении в состояние покоя завершается полный цикл . В этой точке угол наклона касательной к кривой равен углу ее наклона в начальной точке. С точки зрения математики звуковые колебания описываются синусоидальной функцией:
Каждый аргумент этой функции определяет какой-либо параметр звука: высоту, интенсивность или тембр. Высота определяется частотой колебаний. Низким частотам соответствуют низкие звуки, высоким — высокие.
Высота звука пропорциональна его частоте.
Спектр частот, различаемых ухом, индивидуален для каждого человека и зависит от возраста, но, как правило, он охватывает 11 октав:
«Интенсивность», то есть звуковая энергия, переносимая звуковой волной за единицу времени, зависит от амплитуды звуковых колебаний: чем выше громкость, тем больше амплитуда волны. Интересно, что нижний порог слышимости соответствует звуковому давлению в 2·10– 4 бар, а болевой порог соответствует давлению в 200 бар.
Интенсивность звука пропорциональна амплитуде звуковой волны.
Единица измерения громкости звука — бел, хотя на практике используется децибел (дБ), равный одной десятой части бела. При определении этой величины учитывалось, что интенсивность ощущения звука человеком пропорциональна не интенсивности звука, а его логарифму. Иными словами, при относительно высокой интенсивности звука неприятные ощущения нарастают со все большей скоростью. Шкала интенсивности звука начинается с 0 дБ (порога слышимости) и заканчивается 120 или 140 дБ — болевым порогом. В следующей таблице приведены некоторые примеры физических явлений и соответствующей им интенсивности звука:
* * *
ТРЕХМЕРНЫЕ ВОЛНЫ
Чтобы
лучше понять природу звука, интересно рассмотреть различные виды волн. Существуют одномерные волны, которые распространяются вдоль прямой линии. Другие распространяются на поверхности и являются двумерными. К таким волнам относятся колебания, возникающие при падении камня на поверхность воды. Фронт этих волн представляет собой концентрические окружности, в центре которых расположен источник звука. Звуковые волны относятся к третьему виду — трехмерным волнам. Фронтом звуковой волны является сферическая поверхность. Хотя звуковые волны описываются синусоидальными кривыми, звук распространяется в трехмерном пространстве. Интенсивность звука — это энергия потока, проходящего через поверхность единичной площади. Так как речь идет о ряде концентрических сфер, интенсивность рассчитывается по следующей формуле:I = P/S
где I — интенсивность, Р — энергия, S — площадь поверхности. Так как S = 42, то интенсивность звука обратно пропорциональна квадрату расстояния до его источника.
* * *
Наконец, тембр определяет «индивидуальность» звука. Так, мы узнаем именно тембр голоса определенного человека. Тембр также позволяет различать звуки одинаковой интенсивности и высоты, извлекаемые из разных инструментов. Какова же физическая природа тембра? Чтобы ответить на этот вопрос, необходимо подробнее изучить природу звука.
Чистые и настоящие тона
График синусоидальной функции соответствует чистым звуковым колебаниям, которые не так часто встречаются в реальном мире. Примерами чистых звуков являются звуки камертона, свист, а также звук трения мокрого пальца о стекло.
Однако звук гитарной струны, колокола или флейты образуется основными колебаниями вкупе со множеством волн меньшей интенсивности и большей частоты. Эти волны называются обертонами. Любой звук, который не является чистым, состоит из множества одновременно звучащих звуков. В основе анализа отдельных обертонов каждого звука лежат открытия, совершенные французским математиком Жаном Батистом Жозефом Фурье (1768–1830), который доказал, что любую периодическую несинусоидальную волну можно разложить в ряд синусоидальных волн.
Звуковую волну можно представить как совокупность волн ее отдельных обертонов и волны основного звука. Этот кажущийся хаос в действительности представляет собой строго упорядоченную систему. В зависимости от структуры материала источника звука, окружающей среды, резонаторов и других факторов формируются обертоны основного тона, частоты которых непосредственно связаны с частотой основного звука. При анализе и оценке обертоны упорядочиваются и нумеруются в порядке возрастания частоты. В целом можно говорить, что с ростом частоты звука увеличивается его интенсивность. Однако интенсивность обертонов определяется множеством факторов, среди которых форма источника звука, форма полостей в нем, материал, из которого он изготовлен, и многие другие параметры. Сочетание этих параметров определяет, какие обертоны будут иметь большую интенсивность, какие — меньшую. Таким образом, многообразие возможных значений параметров порождает различные тембры, наделяющие звук особым звучанием.
Звук, издаваемый инструментом, обладает следующими четырьмя характеристиками, связанными с распространением звуковых волн:
— атака — время от начала игры на инструменте до момента, когда звук достигает наибольшей высоты;
— спад — временной интервал от точки наибольшей высоты до момента стабилизации звука;
— задержка — время, в течение которого извлечение звука продолжается, а его высота остается неизменной;