Чтение онлайн

ЖАНРЫ

Электроника в вопросах и ответах
Шрифт:

Рис. 3.11. Характеристика туннельного диода

Дальнейшее увеличение напряжения смещения вызывает такое уменьшение электрического ноля в барьере, что прохождение электронов через область барьера прекращается. Одновременно по мере роста напряжения возрастает «нормальный» ток диода, смещенного в прямом направлении. Название «туннельный» вытекает из более подробного рассмотрения сложных явлений в переходе, которое предполагает, что электроны, будучи не в состоянии пройти нормальным способом над потенциальным барьером, проходят под барьером, как бы через туннель.

Туннельный диод, называемый иногда диодом Есаки, используется в электронных устройствах в качестве элемента с отрицательным сопротивлением.

Что такое варакторный диод?

Это полупроводниковый диод с р-n переходом, изготовленный по специальной

технологии, в котором имеет место нелинейная зависимость емкости запертого р-n перехода от приложенного к диоду обратного напряжения. Емкость диода зависит от ширины запирающего слоя, который в этом случае можно трактовать как диэлектрик конденсатора. Обкладками конденсатора служат прилегающие к запирающему слою области полупроводника. Если напряжение, смещающее диод в обратном направлении, возрастает, то емкость диода уменьшается. Для типичного диода в интервале отрицательных напряжений от нескольких десятков вольт до нуля емкость изменяется от 10 до 200 пФ (рис. 3.12).

Рис. 3.12. Условное графическое обозначение варакторного диода (а) и характеристика изменения емкости (б)

Варакторные диоды, называемые также емкостными диодами или варикапами, находят применение, в частности, как элементы, включаемые в резонансные контуры, которые можно при этом перестраивать, изменяя напряжение смещения на аноде (например, с помощью потенциометра). Такое решение часто используют в радиоприемниках, исключая, таким образом, неудобный и дорогостоящий конденсатор переменной емкости поворотного типа (рис. 3.13).

Рис. 3.13. Принцип перестройки резонансного контура с помощью варакторного диода

Регулируемое напряжение подводится к диоду через резистор R, сопротивление которого должно быть настолько большим, чтобы не шунтировать резонансный контур. Зависящее от этого напряжения изменение емкости диода вызывает изменение емкости, подключенной параллельно емкости резонансного контура. Тем самым изменяется результирующая емкость этого контура, а следовательно, и его резонансная частота.

Что такое р-i-n диод?

Это диод, содержащий слой собственного полупроводника между областями р– и n– типа. Положительное смещение полупроводника р по отношению к полупроводнику n– типа вызывает перемещение электронов из n-области и одновременно дырок из р– области в собственный полупроводник. Концентрация примесей в собственном полупроводнике увеличивается, и сопротивление этой области уменьшается. При противоположном смещении из-за высокого удельного сопротивления области собственного полупроводника и большой ширины перехода (запирающего слоя) сопротивление велико. При смещении в прямом направлении получают изменение сопротивления диода в интервале, например, от нескольких ом до нескольких килоом.

В частности, р-i-n диоды применяют в переключающих устройствах как элементы с высокой скоростью переключения, в схемах аттенюаторов, управляемых напряжением постоянного тока, и в технике сверхвысоких частот.

Что такое полупроводниковый фотодиод?

Это светочувствительный диод, обычно с одним р-n переходом, работающими при смещении в обратном направлении. Под влиянием излучения, например видимого света, наступает изменение сопротивления диода и, следовательно, изменение тока, протекающего во внешней цепи. Внешнее излучение вызывает увеличение количества основных и неосновных носителей заряда и уменьшение сопротивления, что эквивалентно увеличению обратного тока диода.

Существуют также вакуумные и газонаполненные фотоэлементы (фотодиоды). В типичном вакуумном фотоэлементе подвергаемый воздействию света катод покрыт слоем металла с фотоэмиссионными свойствами, например слоем натрия, калия, цезия. Выбор применяемого металла зависит от длины волны падающего света. Фотоэлементы применяются в фотоэкспонометрах.

Что такое электролюминесцентный диод?

Это диод, светящийся под влиянием подведенной извне электрической энергии. Интенсивность свечения зависит от подводимого тока, причем эта зависимость является линейной в большом диапазоне изменений тока. Существуют вакуумные, газонаполненные и полупроводниковые электролюминесцентные диоды. Все более широкое применение находят последние, работающие при малых напряжениях (около 2 В) и токах (от нескольких до 10–20 мА), что упрощает их работу в транзисторных схемах. При этом их отличает высокая надежность и исключительно большой срок службы. Существуют также многосегментные электролюминесцентные диоды, например из фосфида гелия, используемые в качестве цифровых индикаторов (от 0 до 9). Они нашли применение в миникалькуляторах и электронных часах.

Электролюминесцентные диоды известны также под названием светодиоды.

Как обозначаются полупроводниковые диоды?

В каталогах зарубежных фирм диоды обозначаются буквенно-цифровыми символами. Обозначения бывают различными и зависят от изготовителя и время изготовления. В настоящее время первая буква определяет тип полупроводника: А — германий, В — кремнии. Вторая буква характеризует вид элемента: А — обычный диод, Z — стабилитрон, E — туннельный

диод, Р — фотодиод, В — варакторный диод, Y — выпрямительный диод. Третья буква обозначает элемент, предназначенный для специальных устройств. Цифровое обозначение характеризует некоторые параметры либо очередной тип в производстве.

Таблица 3.1

Полупроводниковые приборы… Обозначение

____________________________________

I. Диоды

1. Диоды выпрямительные:

• малой мощности (со средним значением прямого тока не более 0,3 А)… 1

• средней мощности (со средним значением прямого тока более 0,3 А, но не более 10 А)… 2

2. Диоды универсальные:

• (с рабочей частотой не более 1000 МГц.)… 4

3. Диоды импульсные:

• со временем восстановления обратного сопротивления более 150 нс… 5

• со временем восстановления обратного сопротивления более 30, но не более 150 нс… 6

• со временем восстановления обратного сопротивления более 5, но не более 30 нс… 7

• со временем восстановления обратного сопротивления не менее 1 и не более 5 нс… 8

• со временем восстановления обратного сопротивления менее 1 нс… 9

4. Выпрямительные столбы и блоки:

• столбы малой мощности (со средним значением прямого тока более 0,3 А)… 1

• столбы средней мощности (со средним значением прямого тока более 0,3, но не более 10 А)… 2

• блоки малой мощности (со средним значением прямого тока более 0,3 А)… 3

• блоки средней мощности (со средним значением прямого тока более 0,3, но не более 10 А)… 4

5. Диоды сверхвысокочастотные:

• смесительные… 1

• детекторные… 2

• параметрические… 4

• регулирующие (переключательные, ограничительные и модуляторные)… 5

• умножительные… 6

• генераторные… 7

6. Варикапы:

• подстроенные… 1

• умножительные (варакторные)… 2

7. Диоды туннельные и обращенные:

• усилительные… 1

• генераторные… 2

• переключательные… 3

• обращенные… 4

8. Диоды излучающие:

• инфракрасного диапазона… 1

видимого диапазона (светодиоды) с яркостью:

• не более 55 нт… 3

• более 500 нт… 4

II. Тиристоры

1. Диодные тиристоры:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 1

• средней мощности (с допустимым значением прямого тока более 0,3 А, но не более 10 А)… 2

2. Триодные тиристоры:

— незапираемые:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 1

• средней мощности (с допустимым значением прямого тока более 0,3, но не более 10 А)… 2

— запираемые:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 3

• средней мощности (с допустимым значением прямого тока не более 0,3 А)… 4

— симметричные незапираемые:

• малой мощности (с допустимым значением прямого тока не более 0,3 А)… 5

• средней мощности (с допустимым значением прямого тока более 0,3, но не более 10 А)… 6

В СССР полупроводниковые диоды также имеют буквенно-цифровую маркировку. Первая буква в приборах широкого применения определяет тип исходного материала: Г — германий, К— кремний, А — соединения галлия.

Вторая буква определяет подкласс прибора: Д — диоды выпрямительные, универсальные, импульсные; Ц — выпрямительные столбцы и блоки; А — диоды сверхвысокочастотные; В — варикапы; И — диоды туннельные и обращенные; Л — диоды излучающие; Б — приборы с объемным эффектом (приборы Ганна); С — стабилитроны и стабисторы. Третий элемент маркировки (цифра) соответствует назначению прибора (табл. 3.1). Четвертый и пятый элементы маркировки прибора определяют порядковый номер разработки технологического типа прибора и обозначаются от 1 до 99.

Третий элемент маркировки и стабисторов (цифра) определяет индекс мощности, а четвертый и пятый — номинальное напряжение стабилизации (табл. 3.2). При напряжении стабилизации менее 10 В четвертый элемент означает целое число, а пятый — десятые доли напряжения стабилизации. При напряжении стабилизации от 10 до 99 В четвертый и пятый элементы обозначают номинальное напряжение стабилизации, а от 100 до 199 В разность номинального напряжения стабилизации и 100 В. Шестой элемент маркировки определяет последовательность разработки и обозначается буквами от А до Я, о для диодов определяет деление технологического типа на параметрические группы. Например, КД206В — кремниевый выпрямительный диод, предназначенный для устройств широкого применения, средней мощности с порядковым номером разработки G. Прим. ред.

Поделиться с друзьями: