Евклидово окно. История геометрии от параллельных прямых до гиперпространства
Шрифт:
«Если человек свободно падает, он не чувствует собственного веса». Позднее Эйнштейн назвал это «счастливейшей мыслью» его жизни [241] . Был ли Эйнштейн печальным одиноким человеком? Вообще-то его личная жизнь — не голливудская сказка. Он женился, развелся, женился повторно и все время относился к брачной жизни отрицательно. От своего первенца он отказался — отдал на усыновление. Его младший ребенок оказался шизофреником и умер в психиатрической больнице. Нацисты гонялись за ним по всему континенту, а на второй родине ему так и не удалось почувствовать себя как дома. Однако мысль, доставившая Эйнштейну столько радости, в любой жизни оказалась бы значимой, имей она одинаковое значение для всех.
241
Pais,
Эйнштейн говорил, что это осознание «поразило» его; оно стало откровением, приведшим ученого к его величайшему достижению. Падающий человек Эйнштейна стал эйнштейновым яблоком, семенем, его ростки — новая теория тяготения, новое представление о космологии, новый подход к физической теории вообще. Эйнштейн искал нечто подобное с 1905 года — новый принцип, могущий стать путеводным в поисках лучшей теории относительности. Он понимал, что исходная теория неполна. Даже с учетом всех следствий субъективности пространства и времени, его специальная теория все равно оставалась лишь новой кинетикой. Она описывала, как тела реагируют на воздействие определенных сил, но она их не определяла. Ясное дело, специальная теория относительности задумывалась так, чтобы идеально стыковаться с теорией Максвелла, поэтому загвоздка состояла не в электромагнитных силах. Силы гравитации же — совсем другое дело.
Единственной на 1905 год теорией тяготения оставалась ньютонова. Ньютон был не дурак: он дал такое описание гравитационным силам, чтобы оно увязывалось с его же кинетикой, т. е. с его законами движения. Поскольку специальная теория относительности заменила ньютоновские законы новой кинетикой, неудивительно, что Эйнштейн счел гравитационную теорию Ньютона неподходящей. Вспомним формулировку закона всемирного тяготения:
Сила тяготения между двумя материальными точками в любой момент времени пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними в данный момент времени.
Вот и вся недолга. Этот закон можно перевести на язык математики и производить количественные расчеты. Можно применить методы матанализа и перейти от материальных «точек» к протяженным объектам. А можно воткнуть его в законы движения и получить уравнения, описывающие, как объекты вроде небесных тел движутся под влиянием друг друга. Или, обильно попотев и проявив гениальность, можно приблизительно решить эти уравнения и предсказывать орбиты вновь открытых астероидов — это сделало знаменитым Гаусса: он предсказал орбиту Цереры [242] . Исследование следствий гравитационного закона Ньютона оказалось куда сложнее его исходной формулировки, и физики с легкостью нашли себе работу на тысячи человекочасов.
242
Церера (1 Ceres ) — самая близкая к Земле карликовая планета в поясе астероидов Солнечной системы. — Прим. пер.
Этот закон был немил самому открывателю: Ньютон находил мгновенную передачу силового воздействия подозрительной. В теории относительности подозрение переросло в обвинение: ничто не может передаваться быстрее скорости света. Но и это еще не все. Задумаемся над оборотом «в данный момент». В теории относительности, как мы успели заметить, это субъективная категория. Если две массы находятся в движении друг относительно друга, события, кажущиеся одной из этих масс одновременными, другой массой будут восприняты как произошедшие в разное время. Ну и к тому же, как обнаружил Лоренц, они не договорятся ни о показателях масс, ни о значениях расстояний.
Эйнштейн знал, что до совершенства его теории не хватает описания гравитации, не противоречащего специальной теории относительности. Но Эйнштейну не давало покоя еще кое-что. В специальной теории он активно настаивал на принципе, что наблюдатель обязан иметь возможность считать себя покоящимся, не меняя при этом теорий физики — в частности, принципа, что скорость света есть постоянная величина. Это утверждение обязано применяться к любому наблюдателю. Но в специальной теории относительности оно применимо
лишь к наблюдателю, находящемуся в равномерном движении.«Что это за привилегированное состояние такое — равномерное движение?» — может брюзгливо спросить скептик или логик. Отрепетированный ответ таков: состояние движения по прямой с постоянной скоростью. Действительно, из толпы наблюдателей, движущихся по прямой с постоянной скоростью относительно друг друга, получается славный «клуб старых друзей», и его члены могут втихаря договориться о равенстве и мере во всем. Но удастся ли им отбиться от чужака, если тот заявит, что их движение равномерно лишь по отношению друг к другу и только потому, на самом деле, что они меняют направление и скорость движения в унисон?
Вообразим стадион, битком набитый фанатами, прикипевшими к своим сиденьям в угаре и азарте игры. Вот он, символ равномерного движения: состояние диванного овоща (равномерное движение с нулевой скоростью). Теперь представим другого диванного овоща — астронавтку, в часы досуга на космической станции не отлипающую от кресла перед телевизионным монитором. С ее точки зрения целый стадион фанатов вращается с бешеной скоростью вокруг земной оси, и это движение с трудом можно именовать прямолинейным. Какой судья может обжаловать ее заявление о том, что это она покоится, а они — вращаются? Или, если уж на то пошло, заявление какого-нибудь третьего наблюдателя, по чьему мнению и астронавтка, и стадион несутся куда-то как на пожаре, дружно виляя туда и сюда?
Оказывается, есть способ разобраться, что к чему. Для автора этой книги все просто: в состоянии равномерного движения он сидит себе спокойно и размышляет над красотой, с какой законы Ньютона описывают мир вокруг, а если подвергнуть автора избыточным ускорениям, он зеленеет и принимается блевать. Такое явление впервые наблюдалось в «шеви» в начале 1960-х. Воздействие, оказываемое ускорением на человеческое тело, разумеется, сложно, однако физика за ним стоит простая: ускорение не проходит незамеченным. Поставим мысленный эксперимент с участием сына Эйнштейна Ханса Альберта в качестве морской свинки. Хансу Альберту в 1907 году было пять лет — возраст, в котором предельно неравномерное движение все еще видится извращенно притягательным. Теперь представим Ханса Альберта на карусели, а его папу, доктора Эйнштейна, на покоящейся платформе, окружающей карусель.
У Ханса Альберта в кулачке — леденец на палочке. Он выпускает его. Если бы карусель стояла на месте, леденец бы попросту упал вниз. Но она вращается, и леденец улетит вдаль по касательной к той точке, в которой его выпустили из рук. Дети склонны считать себя центром Вселенной. Представим, что на этом же настаивает Ханс Альберт: в обоих случаях покоится именно он. Во втором случае карусель не покажется ему движущейся. Напротив, с его точки зрения, это мир вращается вокруг него. Старшего Эйнштейна во всем этом беспокоило то, что, в отличие от столкновения топора Николая и книги Алексея, в этих двух свидетельских описаниях события вроде бы подчинялись разным законам. Чтобы убедиться в этом, давайте проанализируем, как именно оба наблюдателя воспринимают ситуацию. Эйнштейн-отец строит систему координат с привязкой к Земле. В его системе его положение не меняется, а Ханс Альберт описывает круги с центром в виде оси карусели. Леденец какое-то время будет двигаться вместе с Хансом Альбертом — к этому движению его принудит сжатый кулачок ребенка. В тот миг, когда Ханс Альберт ослабит хватку, леденец продолжит движение в соответствии с законами Ньютона. Это означает, что он покинет круговую орбиту и направится по прямой с той скоростью и в том же направлении, какие у него были в момент расставания с Хансом Альбертом. Ни законы Ньютона, ни специальная теория относительности не нуждаются в коррективах для описания этого происшествия.
Теперь рассмотрим ситуацию с точки зрения Ханса Альберта. Он строит систему координат, привязанную к карусели так, что его положение не меняется. Леденец какое-то время покоится там же, где и Ханс Альберт. Но стоит ему разжать кулачок, как леденец внезапно отправляется в полет. Объекты ни в ньютоновой, ни в эйнштейновой физике так себя не ведут. Похоже, законы этих физик не выполняются. Более того, в своей системе отсчета у Ханса Альберта может возникнуть искушение заменить первый закон на такое утверждение: