Maple 9.5/10 в математике, физике и образовании
Шрифт:
Этот график, который читатель может просмотреть сам, описывает хорошо известным апериодическим экспоненциальный закон уменьшения числа атомов вещества в ходе его радиоактивного распада. Подобные зависимости, кстати, характерны для напряжения на конденсаторе С при его разряде через резистор R, для тока в LA-цепи и для многих простых физических явлений, описывающихся дифференциальным уравнением первого порядка.
7.1.3. Модели популяций Мальтуса и Ферхюльса-Пирла
Еще одним классическим примером применения дифференциального уравнения первого порядка является давно известная и довольно грубая
Представим задание дифференциального уравнения динамики популяций по модели Мальтуса и его решение в аналитическом виде:
Нетрудно заметить, что решение этого уравнения аналогично решению дифференциального уравнения радиоактивного распада и описывается также экспоненциальной функций. Однако, в зависимости от того, какой фактор (рождаемость или смертность) преобладает наблюдается либо экспоненциальный рост, либо экспоненциальный спад биомассы популяций.
Более правдоподобную модель популяций предложили Ферхюльст и Пирл. Эта модель учитывает (коэффициентом внутривидовую конкуренцию и позволяет учесть приближение популяций к некоторому состоянию равновесия. На рис. 7.1 представлено дифференциальное уравнение динамики популяций Ферхюльста-Пирла. Решения приведены в общем виде, а также для k=g= k/g=1 и разных x(0)=1, 0.5 и 2.
Рис. 7.1. Моделирование популяций по модели Ферхюльста и Пирла
Поведение системы зависит от соотношения k/g и x(0)=N. При их равенстве количество биомассы популяции не меняется. При N>k/g биомасса экспоненциально уменьшается, приближаясь к значению k/g, а при N<k/g она экспоненциально возрастает, также приближаясь к k/g.
7.1.4. Системы дифференциальных уравнений
Встроенные в математические системы функции обычно решают систему из обыкновенных дифференциальных уравнений (ОДУ), представленную в форме Коши:
Здесь левая система задает начальные условия, а вторая представляет систему ОДУ.
7.1.5. Сведение ДУ высокого порядка к системам ОДУ первого порядка
Часто встречаются ДУ высокого (n-го) порядка:
где
Обозначив
и
Теперь
решение этого уравнения можно свести к решению системы ОДУ:В таком виде ДУ n-го порядка может решаться стандартными средствами решения систем ОДУ, входящими в большинство математических систем.
7.1.6. Решение задачи на полет камня
В качестве примера аналитического решения системы дифференциальных уравнений рассмотрим постановку типичной физической задачи моделирования «Бросок камня», позволяющую описать полет камня, брошенного под углом к горизонту.
Модель должна позволять:
Вычислять положение камня в любой момент времени.
Исходные данные:
Масса камня, начальные координаты, начальная скорость и угол броска мяча.
На основе содержательной модели разрабатывается концептуальная формулировка задачи моделирования. Применительно к нашей задаче движение камня может быть описано в соответствии с законами классической механики Ньютона.
Гипотезы, принятые для модели:
• камень будем считать материальной точкой массой m, положение которой совпадает с центром масс камня;
• движение происходит в поле силы тяжести с постоянным ускорением свободного падения g и описывается уравнениями классической механики Ньютона;
• движение камня происходит в одной плоскости, перпендикулярной поверхность Земли;
• сопротивлением воздуха на первых порах пренебрегаем.
В качестве параметров движения будем использовать координаты (х, у) и скорость v(vx, vy) центра масс камня.
Концептуальная постановка задачи на основе принятых гипотез заключается в определении закона движения материальной точки массой m под действием силы тяжести, если известны начальные координаты точки х0 и ее начальная скорость v0 и угол броска α0.
Таким образом, модель является простой — объект, как материальная точка, не имеет внутренней структуры. Учитывая типичные скорости и высоту броска камня, можно считать постоянным ускорение свободного падения. Переход от трехмерных координат к плоскости значительно упрощает решение задачи. Он вполне допустим, если камень не подкручивается при броске. Пренебрежение сопротивлением воздуха, как будет показано далее, приводит к значительной систематической ошибке результатов моделирования.
Теперь перейдем к составлению математической модели объекта — совокупности математических соотношений, описывающих его поведение и свойства. Из законов и определяющих выражений предметной дисциплины формируются уравнения модели.
По оси x на камень не действуют никакие силы, по оси y — действует сила тяжести. Согласно законам Ньютона имеем уравнения движения по оси x и оси y.
при следующих начальных условиях