Математические модели в естественнонаучном образовании
Шрифт:
Заметим, что пришедшая из химии автокаталитическая модель применима, среди прочего, для моделирования динамики трудовой миграции в сфере математического образования.
1.3. Анализ нелинейных моделей
В отличие от простой линейной модели, описывающей экспоненциальный рост, нелинейные модели, такие как дискретная логистическая, могут описывать достаточно сложную динамику поведения. Без сомнения, это стало заметным в ходе выполнения некоторые упражнений из предыдущего раздела.
В этом разделе рассмотрим несколько конкретных типов поведения и разработаем простые инструменты для их изучения.
Начнём с моделирования таких явлений, как переходные процессы, равновесие и стабилизация. Полезно выделить несколько аспектов, связанных с поведением динамической модели. Иногда, несмотря на первоначальную уникальность, после того как прошло много шагов, поведение модели становится шаблонным. Первые несколько шагов итерации, однако, могут не указывать на то, что подобное произойдет в долгосрочной перспективе. Например, с дискретной логистической моделью
Как правило, исследователей интересует долгосрочное поведение модели. Причина этого заключается в том, что изучаемая система не должна быть разрушена раньше, чем прекратятся переходные процессы. Часто, но далеко не всегда, долгосрочное поведение не зависит от точной численности исходной популяции. В модели
Определение. Равновесным значением для модели
Нахождение равновесных значений сводится к решению уравнения равновесия. Для модели
Вопросы для самопроверки:
– Графически тоже можно найти равновесия, выполнив поиск пересечения кривой
Тем не менее, Равновесие все еще может иметь различные качественные особенности. В примере выше
Предположим, что модель близка к описанию реальной популяции, стабильные равновесия – это те, которые можно наблюдать не только в живой природе. Поскольку любая система, вероятно, будет иметь небольшие отклонения от идеальной модели, даже когда популяция находится в состоянии равновесия, ожидается, что она будет меняться, по крайней мере, благодаря тем факторам, которые исключены из модели или изначально не принимались во внимание. Однако, отклоняясь на небольшое расстояние от стабильного равновесия, наблюдаемое значение будет возвращаться к нему обратно. С другой стороны, если происходит отклонение от неустойчивого равновесия, то наблюдаемое значение остается в стороне. Хотя нестабильные равновесия важны для понимания модели в целом, они не являются характерными особенностями популяции, которые стоит когда-либо ожидать в реальном мире.
Далее займёмся вопросами линеаризации. Следующая цель – определить, что заставляет одни равновесия быть стабильными, а другие – нестабильными.
Стабильность зависит от того, что происходит вблизи равновесия. Итак, чтобы сконцентрироваться в окрестности
Пример. Рассмотрим модель
Заметим, что
Это означает, что значения
Можно смотреть на число 0.3 как на «коэффициент растяжения», который говорит о том, насколько стремительно меняются отклонения от равновесия с течением времени. В данном примере, поскольку растягиваемся в менее чем 1 раз, на деле имеет место сжатие.
Процесс, описанный в примере выше, называется линеаризацией модели в равновесии, потому что сначала фокусируем внимание вблизи равновесия путем линейной замены
Вопросы для самопроверки:
– Выполните аналогичный анализ для другого равновесия этой модели, чтобы показать, что оно нестабильно. Каким будет коэффициент растяжения, на который расстояния от точки равновесия растут с каждым шагом времени?
В результате аналогичного анализа в окрестности 0 обнаружится, что линеаризация при