Чтение онлайн

ЖАНРЫ

Мысли о главном. О жизни и смерти
Шрифт:

Подобное происходит и у позвоночных (в том числе и у человека). Кроме того, у позвоночных отмечено, что «…в первичных половых клетках имеется цитоплазма особого рода. Эта «зародышевая плазма составляет часть цитоплазмы яйцеклетки (бабушкиной – автор), которая во время дробления попадает в первичные половые клетки» [46] .

И ещё одна загадка первичных половых клеток – об удивительном их передвижении. Они «… чтобы попасть в развивающиеся гонады, мигрируют на большие расстояния…» [47] . «Каким образом, – пишет Дьюкар, – первичные половые клетки амфибий (исследования велись на амфибиях, но это относится и к высшим позвоночным – автор) находят верный путь и движутся в нужном направлении – неизвестно…» [48] Неизвестен этот «приём» и у млекопитающих [49] .

46

Там же. С. 33.

47

Там

же. С. 31.

48

Там же. С. 36.

49

Там же. С. 39.

В заключение рассмотренной темы должен сказать, что подобная разумность и предусмотрительность живой природы свидетельствуют о существовании некоего целесообразного плана развития организма, некоей энтелехии целостности, которые совсем не обязательно должны быть видимы и доступны манипуляциям экспериментаторов. Дьюкар честно признаёт неведомость и недоступность направляющих сил в обозначенных феноменах.

* * *

Попробуем в целом взглянуть на процесс эмбриогенеза у человека. И шире – у млекопитающих: не удастся ли нам наткнуться на истоки целостности этого процесса.

Начнём процесс с дробления зиготы, со стадии бластулы (а точнее – с морулы). Уже на этой стадии определяется пространственная ориентация будущего организма, определение так называемых осей его – переда-зада, верха-низа. Но кто дирижирует этим делом, да и вообще, синхронностью дробления? Э. Дьюкар обращает внимание на загадочные электрические импульсы: «На поздних стадиях дробления Xenopus (лягушки – автор), – замечает она, – была обнаружена передача электрических импульсов от клетки к клетке… Эти импульсы, очевидно, играют важную роль в поддержании процесса дробления, так как при обработке зародышей (морулы – автор) галотаном (вещество, вызывающее электрическое разобщение клеток) дробление прекращается» [50] . Также «…обращают на себя внимание периодические волнообразные движения, проходящие по всему зародышу перед началом каждого дробления. Эти волнообразные движения удивительно напоминают сокращение гладкого мышечного волокна в ответ на раздражение электрическим током» [51] .

50

Дьюкар Э. Клеточные взаимодействия в развитии животных. С. 91.

51

Там же. С. 91.

В то же время о каких-либо сигналах между клетками бластулы ничего не известно. Характерна видоспецифичность способов «поведения» для бластомеров разных видов. «Каждому виду, – сообщает Э. Дьюкар, – свойственны не только определённый тип дробления, но и постоянная скорость этого процесса при данной температуре» [52] . Кроме того, дробящиеся клетки «знают», какого числа бластомеров они должны достигнуть в результате дробления [53] .

52

Там же. С. 75.

53

Дьюкар Э. Клеточные взаимодействия в развитии животных. С. 76.

Всё это свидетельствует о некоем загадочном «механизме» целостного влияния на динамику развития зародыша в стадии бластулы.

За морулой и бластулой следует очень важная стадия гаструлы (известно, что если при гаструляции случается какое-либо нарушение – зародыш погибает!). С каким восторгом пишет о гаструляции исследовательница после просмотра кинокадров о ней: «Только тот, кому посчастливилось увидеть процесс гаструляции, заснятый на киноплёнку, может в полной мере оценить всю красоту и координированность происходящих при этом движений клеток» [54] . Как можно при этом умолчать о феномене целостности эмбриональных процессов!

54

Там же. С. 92.

Гаструляция – один из тех моментов эмбриогенеза, при котором происходит массовое передвижение клеток на предназначенные им места. «У зародышей позвоночных (со стадии гаструлы – автор) в клеточных миграциях участвуют, – пишет Дьюкар, – целые слои, состоящие из нескольких сотен клеток и перемещающиеся относительно других клеточных слоёв…» [55] . И тут же исследовательница вынуждена признать непонятность этих передвижений при гаструляции: «Непосредственные причины, вызывающие начало клеточных перемещений при переходе к гаструляции, неизвестны» [56] . Далее она высказывает догадку о том, что этому способствует электрический заряд, «распределяющий клетки по слоям» [57] .

55

Там же. С. 95.

56

Там же. С. 96.

57

Там же. С. 96.

Для подкрепления своей догадки Дьюкар приводит следующие экспериментальные факты, говорящие о том, что получены данные «…о наличии в бластопоре амфибий потока ионов натрия в одном направлении, в результате

чего между бластоцелем, с одной стороны, и клетками и наружной средой – с другой, возникает разность потенциалов 30–40 мВ. Эти авторы полагают, что возникающее при этом однородное электрическое поле может инициировать инвагинацию клеток» [58] . И таким образом дать начало формированию гаструлы. (Здесь уместно отметить, что активность клеток в эмбриогенезе часто связана с некими электромагнитными явлениями, которые стимулируют и направляют дальнейшее формирование функционирующего органа.)

58

Дьюкар Э. Клеточные взаимодействия в развитии животных. С. 97.

Гаструляция происходит практически у всех многоклеточных организмов, от низших до высших, являя собой важнейший момент эмбриогенеза. Конечно, у высших и низших она сильно отличается: так, у кольчатого червя в ней участвует 30 клеток, тогда как у лягушки – 30 000 клеток [59] .

По сути уже в гаструле, в трёх её слоях, намечено, как будет формироваться нервная система, внутренние органы, мышцы, скелет и т. д. У позвоночных кранио-каудальная ориентация, а также билатеральная симметрия «возникают во время гаструляции» и выявляются в нейруляции [60] .

59

Там же. С. 92.

60

Там же. С. 118.

Скажем несколько слов о нейруляции у позвоночных. Эта важнейшая стадия эмбриогенеза включает поэтапно следующие события: образование нервной пластинки из эктодермы гаструлы, затем – нервной трубки из этой пластинки и следом за этим появление на нервной трубке нервного гребня. На последнем и сосредоточим наше внимание. «У позвоночных, – пишет Дьюкар, – есть закладка, клетки которой отличаются своими исключительными способностями к миграции и взаимодействиям и которую трудно со всей определённостью отнести к эктодерме или мезодерме ввиду большого разнообразия образуемых ею структур. Речь идёт о нервном гребне» [61] . (Из его клеток формируются сомиты, спинной и головной мозг, ганглии, хрящи головы и мозговое вещество надпочечников.) Это ещё одна (после гаструлы) структура, в которой совершаются столь массовые передвижения клеток. Необычно и то, что эти передвижения осуществляются благодаря сильному взаимному отталкиванию клеток нервного гребня. Почему? Зачем? Учёные затрудняются ответить. И хотя Дьюкар вновь твердит о любимой своей идее (о биохимическом взаимодействии клеток в эмбриогенезе), она вынуждена признать странную вещь: взаимодействие клеток нервного гребня, – пишет она, – «…происходит на стадии миграции и выражается во взаимном отталкивании…», однако «…так и не удалось выяснить, обусловлено ли их взаимное отталкивание каким-либо веществом или чем-то иным» [62] .

61

Там же. С. 176.

62

Дьюкар Э. Клеточные взаимодействия в развитии животных. С. 177.

* * *

Для нас представляет интерес идея о так называемых шаблонах. В экспериментах у мышей были взяты клетки из формирующегося гиппокампа и мозжечка и диссоциированы. После этого in vitro они были смешаны – и затем сами разделись и воссоединились в ткани гиппокампа и мозжечка. Дьюкар по этому поводу не скрывает удивления и предполагает, «…что у клеток существуют устойчивые “шаблоны поведения”, которые обеспечивают образование определённых групп, характерных для каждого отдела головного мозга…». Она утверждает, что есть «гены, ответственные за эти шаблоны» [63] . Это очень важное наблюдение о «шаблонах», о некоторых «образцах» и «ориентирах», задающих поведение клеток, свидетельствует отнюдь не о механизме взаимодействия их и не о самосборке.

63

Там же. С. 212.

Здесь я считаю важным сказать о памяти эмбриона. Эта память на каждой стадии развития подсказывает ему, что уже сформировано, а что и когда ещё предстоит сформировать и развить. Эта память вовсе не исчерпывается генетической памятью – это особенная память! Где и в чём её хранилище?

* * *

Обсуждая множество феноменов эмбриогенеза, Дьюкар постоянно обращает внимание на механизмы межклеточного взаимодействия, которые, по её мнению, и являются основным «двигателем» эмбриогенеза. В то же время она многократно признаётся в том, что эти механизмы неизвестны, а часто и не поддаются расшифровке. А дело-то в том, что надо идти не от деталей и частностей, а от целого, которое не следует бояться постулировать, несмотря на его неуловимость и парадоксальность. Дьюкар в итоге своего труда заключает: «Однако теперь, когда мы заканчиваем перечисление примеров межклеточных взаимодействий, происходящих на всём протяжении развития животных, следует чётко указать, что хотя почти для каждого из постулированных механизмов можно привести ряд подтверждающих его экспериментальных данных, ни один из них нельзя назвать общим или нормальным явлением, существование которого твёрдо установлено» [64] .

64

Дьюкар Э. Клеточные взаимодействия в развитии животных. С. 290.

Поделиться с друзьями: