Чтение онлайн

ЖАНРЫ

На переломе. Философские дискуссии 20-х годов
Шрифт:

Мне кажется, что и для философа очень важно то, что хотя бы в узкой области физики можно показать, что понятие вероятности в обычном смысле закономерной последовательности случайных явлений имеет строго объективный смысл и что понятие и происхождение случайности можно точно определить, оставаясь все время строго на почве детерминизма».

Точным и научным определение вероятности может быть только тогда, если мы будем трактовать понятие случайности, вероятности в объективном смысле. Обширная литература, посвященная критике основ теории вероятности, в значительной мере направлена против субъективной трактовки вероятности и случайности Лапласа, которое заключает в себе явное petitio principii [215] . В самое

последнее время мы имеем в работах Мизеса критику субъективной трактовки понятия вероятности и попытку обоснования теории вероятностей, опирающуюся на объективное определение вероятности. Эти работы получают признание со стороны физиков и в вышедшем недавно томе «Handbuch der Physik» [216] , в новейшей и самой авторитетной физической энциклопедии теория вероятностей излагается на основе объективного определения понятия вероятности.

215

— предвосхищение основания (логическая ошибка, которая заключается в скрытом использовании недоказанной посылки для доказательства). Ред.

216

«Справочник по физике». Ред.

И вот после работ Курно, Смолуховского, Мизеса и других, после того как философски вопрос исчерпывающе обоснован Гегелем и Энгельсом, нас снова хотят тащить вспять к концепциям Лапласа, объявляя случайность субъективной категорией. И это называется борьбой с «неосхоластикой». Единственным извинением нашим суровым критикам может быть лишь то, что все новейшее развитие физики и математики для них книга за семью печатями.

После того как вопрос о связи между случайностью, вероятностью и статистической закономерностью выяснен, нетрудно установить, в чем заключается связь между обратимыми (механическими) и не обратимыми (тепловыми) процессами и в чем суть статистического толкования закона рассеяния энергии.

Тепловое состояние тела можно характеризовать его температурой. Температура выражает степень нагретости тела. Понятие температуры не связано ни с какими гипотезами относительно строения тела; оно является эмпирически непосредственно наблюдаемой величиной (например, положение уровня ртути в термометре), определяющей тепловое состояние тела. Закон рассеяния энергии в той формулировке, которая приведена выше (формулировки Клаузиуса), опирается на определение температуры как непосредственно наблюдаемой величины. В этом виде формулировка закона есть макроскопическая формулировка, а сам закон выражен в формулировке Клаузиуса в форме динамической закономерности.

Если мы обратимся к микроскопической, атомной структуре материи, то нам нужно подойти иначе к определению теплового состояния тела. Степень нагретости тела, согласно механической теории тепла, определяется энергией движения молекул. Не все молекулы имеют одинаковые скорости, а энергия не распределена поровну между всеми молекулами, но и скорость и энергия распределены между молекулами по определенному закону.

Каждому определенному распределению скорости между молекулами соответствует определенное тепловое состояние тела. Иначе говоря, каждому микросостоянию, определяющемуся распределением молекул, соответствует макросостояние, определяющееся температурой.

Но одному и тому же макросостоянию, определяющемуся температурой, соответствует не одно, а несколько микросостояний.

Одно и то же тепловое состояние тела может быть реализовано различными распределениями скоростей между молекулами, если только средняя энергия остается той же: В самом деле, для определения теплового состояния не имеет значения, какие именно молекулы обладают той или иной скоростью.

Скорость, которой обладает определенная молекула, — случайна. Случайна именно в смысле объективной случайности, так как для определения теплового состояния важен общий характер распределения скоростей, характеризующий всю совокупность молекул в целом, а не индивидуальное распределение скоростей.

Точно так же, как в разобранном

примере в ряде бросаний монеты имеет значение не отдельное выпадение орла или решки, а общее распределение числа орлов и решек, характеризующее изучаемый ряд в целом.

Итак, одно и то же тепловое состояние может быть реализовано определенным количеством микросостояний.

Это значит, что если мы будем рассматривать всевозможные микросостояния тела, газа, например, причем будем обращать внимание на значение скоростей у каждой отдельной молекулы, то мы получим чрезвычайно большой ряд микросостояний. Но мы видели выше, что целый ряд микросостояний будет реализовать одно и то же тепловое состояние.

Чем больше ряд микросостояний, реализующий одно и то же тепловое микросостояние, тем оно вероятнее, подобно тому как вынуть белый шар из урны, содержащей 1 000 белых шаров и 1 черный, вероятней, чем вынуть черный.

Каждое тепловое состояние с точки зрения микро-космической обладает определенной вероятностью.

Наблюдая течение тепловых процессов, мы убеждаемся, что разность уравнений макроскопических тепловых состояний стремится выравняться, т. е. прийти в состояние равновесия. В обратном направлении процесс протекать не будет.

В этом и состоит суть формулировки Клаузиуса: переход всегда совершается только от тела более нагретого (на более высоком тепловом уровне) к телу менее нагретому (на более низком тепловом уровне).

Так как мы наблюдаем постоянно только такое течение процесса, то отсюда мы заключаем, что микропроцессы, реализующие равновесное состояние, наиболее вероятны.

Если мы имеем один объем газа более нагретый, чем другой объем, то тепловой процесс будет протекать так, чтобы температура выравнялась, т. е. чтобы получилось наиболее вероятное микросостояние, а это и будет состояние теплового равновесия.

Мы можем искусственно, внешним вмешательством нарушить тепловое равновесие — например, нагрев одно из тел, — точно так же, как мы можем искусственно выбирать каждый раз черный шар из урны. Но, предоставленный самому себе, тепловой процесс снова придет в равновесие, подобно тому как если мы, не выбирая, будем тащить шар наудачу, то получим распределение, соответствующее вероятности появления того или иного шара.

Теперь ясно, почему мы считаем тепловые процессы необратимыми. Они необратимы, потому что в течение теплового процесса есть переход от менее вероятного состояния к более вероятному. Вероятность обратного перехода тепла от холодного тела к теплому — весьма маловероятна, но не равна нулю!

Мы не наблюдаем в природе такого перехода, потому что он необычайно маловероятен, но отнюдь не потому, что он вообще невозможен.

Если мы ставим кастрюлю с водой на примус, то вода закипит. Это то, что мы наблюдаем постоянно. Но вода не необходимо должна закипеть. Она может и замерзнуть, т. е. тепло от воды перейти к пламени горелки. Это не невозможно, но настолько маловероятно, что на появление подобного состояния хоть один раз понадобился промежуток времени, по сравнению с которым время существования всей нашей Солнечной системы лишь исчезающе мало, подобно тому, как для того чтобы вынуть черный шар из урны, содержащей 1 000 000 белых и один черный шар, надо осуществить необычайно длинный ряд вытаскиваний шаров. Конечно, черный шар вовсе не должен вынуться непременно под конец. Он может появиться в любой момент, даже в самом начале, но число его появлений по сравнению с числом появлений белых шаров будет в миллион раз меньше.

Вообще говоря, реализация как угодно маловероятного микросостояния не невозможна и, как и появление черного шара, может случиться в любой момент. Но если бы даже оно случилось и наблюдалось нами, то этим нисколько бы не была нарушена основная тенденция тепловых процессов идти от состояния менее вероятного к состоянию более вероятному.

Такая концепция тепловых процессов есть выражение их в форме статистической закономерности.

В случае динамической закономерности мы имеем определенное однозначное поведение процесса. Камень, поднятый над землей, необходимо должен упасть под действием силы тяготения. Высказывание это с необходимостью относится к каждому единичному случаю.

Поделиться с друзьями: