Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Квантовое состояние частицы
Как выглядит «физическая реальность» на квантовом уровне, где различные «альтернативные возможности», открытые перед системой, должны всегда обладать способностью сосуществовать, образуя суммы со странными комплекснозначными весами? Многие физики впадают в отчаяние при виде такой картины. Вместо этого они призывают рассматривать квантовую теорию только в качестве вычислительной процедуры для расчета вероятностей, а не объективной картины физического мира. Некоторые из них вполне серьезно заявляют, что квантовая теория проповедует невозможность получения объективной картины, по крайней мере той, которая согласуется с физическими фактами. Я же считаю такой пессимизм совершенно необоснованным. Во всяком случае было бы преждевременно на основании сказанного выше принять подобную точку зрения. Позднее мы рассмотрим некоторые из наиболее поразительных следствий квантовых эффектов, что возможно позволит нам понять причины такого отчаяния. Но пока давайте смотреть на вещи более оптимистично и мужественно встретим все, что уготовила нам квантовая теория.
Первым предстанет перед нами квантовое состояние . Попытаемся мысленно представить себе одну-единственную квантовую частицу. Классически, частица определяется своим положением в пространстве, и для того, чтобы узнать, что произойдет с частицей дальше, нам также необходимо знать
Каким же образом можно наглядно изобразить комплексную функцию ? Сделать это сразу для всего трехмерного пространства несколько затруднительно, поэтому мы немного упростим задачу и предположим, что наложенные связи позволяют частице двигаться только вдоль одномерной линии — например, оси х обычной (декартовой) системы координат. Если бы функция была вещественной, то мы могли бы представить себе ось y , перпендикулярную оси х , и построить график функции (рис. 6.10а).
Рис. 6.10.а)График действительной функции действительной переменной х
Но в данном случае для изображения значения комплекснойфункции нам требуется «комплексная ось у » — плоскость Аргана. Для этой цели вообразим, что мы можем использовать два других пространственных измерения: например, у – направление в качестве действительнойоси плоскости Аргана, а z – направление — как мнимуюось. Для получения правильной картины волновой функции мы можем изобразить ( х ) (значение функции в точке х ) точкой на этой плоскости Аргана (т. е. на плоскости yz , проходящей через каждую точку оси х ). Когда положение точки х изменяется, то изменяется также и положение точки на плоскости Аргана. При этом точка описывает некоторую кривую в пространстве, извивающуюся вокруг оси х (рис. 6.10 b).
Рис. 6.10.б)график комплексной функции V действительной переменной х
Назовем эту кривую — кривой рассматриваемой частицы. Если бы мы поместили в некоторой точке х детектор, то вероятность обнаружить частицу в данной точке можно найти, вычислив квадрат модуля амплитуды ( х ), т. е.
| ( x )| 2
равный квадрату расстояния – кривой от оси x [143] .
Чтобы изобразить подобным образом волновую функцию, определенную на всем трехмерном физическом пространстве, понадобилось бы пять измерений: три — для физического пространства и два — для плоскости Аргана в каждой точке, в которой мы строим график функции ( х ). Однако наша упрощенная картина еще нам пригодится. Если мы захотим изучить поведение волновой функции вдоль произвольного направления в физическом пространстве, то для этого необходимо просто выбрать ось х вдоль этой линии, а два других пространственных измерения временно использовать в качестве действительной и мнимой осей на плоскости Аргана. Этот способ поможет нашему осмыслению эксперимента с двумя щелями.
143
Здесь возникает техническая трудность, так как настоящая вероятность найти частицу строгов данной точке была бы равна нулю. Поэтому величину
| ( x )| 2 мы предпочитаем называть плотностью вероятности. Это означает, что на самом деле нам нужна вероятность найти частицу в некотором малом интервале фиксированных размеров. Таким образом, ( х ) определяет плотность амплитуды, а не просто амплитуду.
Как я упоминал выше, в классической физике для того, чтобы определить, что будет происходить дальше, необходимо знать скорость (или импульс) частицы. В квантовой механике нам представляется значительная экономия. Волновая функция уже содержит различные амплитуды для различных возможных импульсов! (Кое-кто из недовольных читателей может возразить, что «самое время» говорить об экономии, если
принять во внимание, как сильно нам пришлось усложнить простую классическую картину точечной частицы. Хотя я во многом согласен с таким читателем, я все же советую не отвергать те лакомые кусочки, которые ему преподносят, ибо худшее еще впереди!) Каким образом амплитуды скоростей определяются волновой функцией ? На самом же деле лучше думать в терминах амплитуд импульсов. (Напомним, что импульс, или количество движения, равен скорости, умноженной на массу частицы, см. гл.6 «Уравнение Шредингера; уравнение Дирака») Для этого следует применить к волновой функции так называемый гармонический анализ. Подробно объяснять здесь, что это такое, было бы неуместно, скажу только, что он тесно связан с тем, что происходит с музыкальными звуками. Волну любой формы можно разложить в сумму различных «гармоник» (отсюда и термин «гармонический анализ»), которые представляют собой чистые тона различной высоты (т. е. с различными частотами). В случае волновой функции «чистые тона» соответствуют различным возможным значениям импульса, которые может иметь частица, а величина вклада каждого «чистого тона» в определяет амплитуду соответствующего значения импульса. Сами «чистые тона» называются импульсными состояниями.Как выглядит импульсное состояние, представленное — функцией? Оно похоже на кривую, напоминающую по форме штопор, официальное математическое название которой — винтовая линия(рис. 6.11) [144] .
Рис. 6.11.Импульсное состояние имеет – кривую в форме штопора
Штопоры с частыми витками соответствуют большим импульсам, а штопоры, которые едва вращаются, — очень малым импульсам. Существует предельный случай, когда – кривая вообще не делает витков и вырождается в прямую в случае нулевого импульса. В поведении винтовой линии неявно скрыто знаменитое соотношение Планка . Так как энергия Е всегда пропорциональна частоте v ( Е = hv ), то частые витки означают короткую длину волны, большую частотуи, следовательно, большой импульс и высокую энергию, а редкие витки означают малую частоту и низкую энергию. Если плоскости Аргана ориентированы обычным способом (т. е. когда оси х , у , z образуют, как описано выше, правую тройку), то импульсы, направленные в положительном направлении оси х , соответствуют правым штопорам (которые обычно и используются).
144
На стандартном аналитическом языке любая из наших штопорообразных винтовых линий (т. е. любое импульсное состояние) задается формулой
= e ipx/h = cos(ipx/h) + i sin(ipx/h),
где р — рассматривемое значение импульса z . (см. главу 3)
Иногда квантовые состояния полезно описывать не в терминах обычных волновых функций, как это было сделано выше, а в терминах волновых функций импульсов. Это сводится к рассмотрению разложения волновой функции по различным импульсным состояниям и построению новой функции ' , зависящей на этот раз не от положения х , а от импульса р ; значение ' ( p ) при любом р задает величину вклада состояния с импульсом р в – функцию. (Пространство величин р называется импульсным пространством.) Смысл ' состоит в том, что при каждом конкретном выборе р комплексное число ' ( р ) задает амплитуду того, что частица имеет импульс р .
Существует математическое название для соотношения между функциями и ' . Каждая из этих функций называется преобразованием Фурье другой — в честь французского инженера и математика Жозефа Фурье (1768–1830). Я ограничусь здесь лишь несколькими замечаниями по поводу преобразования Фурье. Первое замечание: между и ' существует замечательная симметрия. Чтобы перейти от назад к ' , мы по существу прибегаем к той же процедуре, которую использовали при переходе от к ' . Теперь ' становится объектом гармонического анализа. «Чистые тона» (т. е. штопоры в пространстве импульсов) на этот раз называются конфигурационными состояниями. Каждое положение х определяет такой «чистый тон» в пространстве импульсов, а величина такого вклада «чистого тона» в дает значение ( x ).
Конфигурационное состояние соответствует (в терминах обычного пространства) некоторой функции , имеющей острый пик в рассматриваемой точке х , а это значит, что все амплитуды равны нулю, за исключением амплитуды в данной точке. Такая функция называется дельта-функцией (Дирака), хотя, строго говоря, это — не совсем «функция» в обычном смысле, так как ее значение в точке х бесконечно велико. Аналогичным образом импульсные состояния (винтовые линии в конфигурационном пространстве) порождают дельта-функции в пространстве импульсов (рис. 6.12). Таким образом, оказывается, что преобразование Фурье винтовой линии есть дельта-функция и наоборот!