Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Как видим, этот характер довольно своеобразный: считается, что большую часть времени эволюция происходит в соответствии с унитарнойэволюционной процедурой U(уравнение Шредингера), но в некоторые моменты времени, когда предполагается, что происходит «наблюдение» (или «измерение»), применяется R– процедураи вектор состояния скачком переходит в другой вектор состояния, | X ), где | X ) представляет собой одну из двух или нескольких ортогональных альтернативных возможностей | X ), | ), | )…, определяемых природой конкретного производимого наблюдения О. Тогда вероятность р скачкообразного перехода от | ) к | X ) определяется уменьшением квадрата длины | ) 2 вектора | ) при проекции | ) (в гильбертовом пространстве) на направление вектора | X ) (Математически это равно величине уменьшения | X ) 2 при проекции вектора | X ) на направление | ).) В таком виде эта процедура оказывается асимметричной во времени, поскольку сразу же послевыполнения наблюдения Овектор
Рис. 8.2.Более экстравагантное изображение эволюции вектора состояния, описанное вспять по времени. Расчетная вероятность, связывающая наблюдение в точке О с наблюдением в точке О', такая же, как и в случае, изображенном на рис. 8.1, но к чему относится это вычисленное значение?
Мы предполагаем, что вектор состояния равен | X ) непосредственно перед О, а не сразу после этого наблюдения, и применим процедуру унитарной эволюции вспять по времени вплоть до момента предыдущего наблюдения О '. Предположим, что в результате обратной эволюции мы получим состояние, описываемое вектором | X') (сразу же после наблюдения О '). В нормальном описании эволюции вперед во времени, изображенном на рис. 8.1, сразу же вслед за О 'мы имели другое состояние | ') (результат наблюдения О ', при котором эволюция вперед во времени вектора | ') переводит его в | ) в момент наблюдения О). Теперь в нашем обращенном во времени описании у вектора | ') тоже есть своя роль: он представляет состояние системы непосредственно перед О '. Вектор состояния | ') соответствует состоянию, фактически наблюдавшемуся в точке О ', так что с «обращенной» точки зрения мы рассматриваем | ') как результат наблюдения О 'в обращенном вспять времени. Расчетное значение квантовомеханической вероятности р', связывающее результаты наблюдений в точках Ои О ', теперь определяется уменьшением величины | X'| 2при проекции | X') в направлении | ') (что равно уменьшению | '| 2при проекции | ') в направлении | ')). То, что мы получим то же самое значение, что и раньше, является фундаментальным свойством оператора U [193] .
193
Это станет несколько более понятным, если использовать операцию скалярного произведения ( | X ) упомянутую в примечании 151 к главе 6. В случае описания вперед по времени вероятность р рассчитывается как:
Тождественность двух выражений следует из ( '| X') = ( | X ), а это, в сущности, и подразумевается под «унитарной эволюцией».
Таким образом, может создаться видимостьустановления симметричности во времени квантовой теориидаже в случае, когда помимо обычной процедуры унитарной эволюции Uучитывается также и разрывный процесс, описываемый процедурой редукции Rвектора состояния. Это, однако, неверно . Квантовая вероятность р описывает — независимо от того, как она рассчитывается — вероятность получить результат (а именно, | X )) в точке Опри условии определенного результата (а именно, | ')) в точке О '. Эта вероятность не обязательно равна вероятности получить данный результат в точке О ' при условииданного результата в точке О, а ведь именно последнюю вероятность [194] и должна определить обращенная во времени квантовая механика. Просто удивительно, до чего много физиков молчаливо полагают эти две вероятности равными друг другу. (Я сам этим грешил — см. Пенроуз [1979б], с. 584.) Однако наиболее вероятно, что эти две вероятности совершенно различны и только первая из них правильно определяется в рамках квантовой механики!
194
Возможно, некоторым читателям сложно понять, что имеется в виду под вероятностью прошлого события при условии, что имело место определенное событие в будущем. Однако это совсем не сложно. Вообразите себе всю историю нашей вселенной, отображенной в пространстве-времени. Чтобы найти вероятность события р при условии, что произошло событие q , мысленно рассмотрим все случаи, когда имело место событие q , и сосчитаем, в какой доле этих случаев имело место также и событие р . Это и есть требуемая вероятность. При этом не важно, относится ли q к событиям, которые обычно происходят после события р , или до него.
Давайте поясним эту ситуацию на простом конкретном примере. Предположим, что у нас есть лампа L и фотоэлемент (то есть, детектор фотонов) Р . Между L и P разместим полупосеребренное зеркало М, наклонив его под углом равным, скажем, 45 ° к линии, соединяющей точки L и Р (рис. 8.3).
Рис. 8.3.Необратимость во времени R– процедурыв простом квантовом эксперименте. Вероятность регистрации фотона фотоэлементом при условииизлучения
фотона источником равна в точности одной второй, но вероятность излучения фотона источником при условии, что фотоэлемент зарегистрировал фотон, заведомо не равна одной второйПредположим, что лампа время от времени случайным образом испускает фотоны, и что конструкция ее такова (в ней используются параболические зеркала), что фотоны всегда оказываются очень точно нацеленными на Р . При каждом попадании фотона на фотоэлемент последний регистрирует это событие, причем мы предполагаем, что устройство срабатывает со 100 %-ной надежностью. Предположим также, что каждый факт излучения фотона регистрируется в точке L и тоже со 100 %-ной надежностью. (Ни одно из этих идеализированных требований не противоречит принципам квантовой механики, хотя практическое достижение такой эффективности может представлять определенные трудности.)
Свойства полупосеребренного зеркала М таковы, что оно отражает в точности половину попадающих на него фотонов и пропускает остальную половину. Правильнее рассматривать это с точки зрения квантовой механики. Волновая функция фотона падает на зеркало и расщепляется на две волновых функции. Амплитуда отраженной части волны равна 1 / 2 , а амплитуда прошедшей части волны тоже равна 1 / 2 . Обе части волновой функции должны считаться «сосуществующими» (при нормальном описании вперед по времени) до того момента, когда предполагается имевшим место «наблюдение». В этой точке ситуация с одновременно сосуществующими альтернативами разрешается (в пользу одной или другой) фактически реализованнойальтернативы с вероятностями, равными квадратам (модулей) соответствующих амплитуд, а именно ( 1 / 2 ) 2 = 1 / 2 в обоих случаях. После выполнения наблюдения вероятности отражения или прохождения фотона действительно оказываются равными одной второй.
Посмотрим теперь, как все это соотносится с нашим экспериментом. Предположим, что зарегистрирован факт излучения фотона лампой L . Волновая функция фотона расщепляется на зеркале и приходит в точку Р с амплитудой, равной 1 / 2 , поэтому фотоэлемент либо регистрирует фотон, либо не регистрирует его — и то и другое с вероятностью, равной одной второй. Другая часть волновой функции фотона попадает в точку А на лабораторной стене(см. рис. 8.3) и тоже с амплитудой 1 / 2 . Если фотоэлемент Р не регистрирует событие, то фотон следует считать попавшим в лабораторную стену в точке А . Если бы в точке А находился другой фотоэлемент, то он регистрировал бы фотон всякий раз, когда фотоэлемент Р не регистрирует фотон, и не регистрировал бы фотон всякий раз, когда фотоэлемент регистрирует фотон. В этом смысле нет никакой необходимости устанавливать фотоэлемент в точке А . Мы можем определить, что сделал бы фотоэлемент в точке А , будь он там установлен, просто глядя на фотоэлементы в точках L и Р .
Теперь должно стать ясно, как выполняются расчеты в квантовой механике. Зададимся вопросом:
«Если известно, что лампа L сработала, то какова вероятность того, что сработал фотоэлемент Р ?»
Для ответа на этот вопрос учтем, что имеется амплитуда, равная 1 / 2 для фотона, прошедшего путь LMP , и амплитуда, равная 1 / 2 , для фотона, прошедшего путь LMA . Возведя эти амплитуды в квадрат, получаем соответствующие вероятности, равные 1 / 2 и 1 / 2 , попадания фотона в точки Р и А соответственно. Следовательно, на наш вопрос квантовая механика дает ответ, равный
« одной второй ».
И действительно, именно такой результат получился бы в случае проведения реального эксперимента.
Мы могли бы с таким же успехом использовать экстравагантную процедуру «с обращенным вспять временем» и получили бы тот же самый результат. Предположим, что мы зафиксировали факт срабатывания фотоэлемента в точке Р . Рассмотрим направленную вспять во времени волновую функцию фотона в предположении, что фотон в конце концов приходит в точку Р . Отслеживая эволюцию процесса назад во времени, мы видим, что фотон движется назад от Р , пока не достигнет зеркала М . В этой точке происходит бифуркация волновой функции и мы имеем амплитуду 1 / 2 того, что фотон достигнет лампы L , и амплитуда 1 / 2 того, что фотон претерпит отражение в точке М и придет в другую точку на лабораторной стене, а именно в точку В на рис. 8.3. Возводя соответствующие амплитуды в квадрат, мы снова получаем для обеих вероятностей значения, равные одной второй. Следует, однако, отдавать себе отчет в том, на какие именно вопросы отвечают эти вероятности. А вопросы следующие: «Если известно, что лампа L сработала, то какова вероятность срабатывания фотоэлемента Р ?» — тот же самый вопрос, что мы рассматривали до этого; и более экстравагантный вопрос: «Какова вероятность срабатывания фотоэлемента Р при условии, что известен факт испускания фотона из стены в точке В ?»
Мы можем рассматривать оба ответа как экспериментально «правильные» в определенном смысле, хотя второй ответ (испускание фотона из стены) скорее представляет собой логическое умозаключение, а не результат реально выполненногоряда экспериментов! Однако ни один из этих вопросов не является обращением во временитого, что был задан выше. Обращенный вспять во времени вопрос звучал бы так:
«Если известно, что фотоэлемент Р сработал, то какова вероятность того, что сработала лампа L ?»
Отметим, что правильный экспериментальный ответ на этот вопрос — это никакая не « одна вторая », а
« единица ».
В случае срабатывания фотоэлемента нет практически никаких сомнений в том, что фотон пришел от лампы, а не от лабораторной стены! На наш обращенный во времени вопрос проведенный в рамках квантовой механики расчет дал нам абсолютно неверный ответ!