Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
ВЕЙЛЬ= 0 .
По мере того, как мы приближаемся к начальной сингулярности все ближе и ближе, мы обнаруживаем, что именно РИЧЧИ, а не ВЕЙЛЬ, становится бесконечным и, таким образом, именно РИЧЧИ, а не ВЕЙЛЬ, определяет начальную сингулярность. Значит, мы имеем дело с низкоэнтропийнойсингулярностью.
Если мы исследуем сингулярность схлопывания в точнойколлапсирующей ФРУ– модели, мы и здесь обнаружим, что в момент схлопывания ВЕЙЛЬ= 0 , тогда как РИЧЧИстремится к бесконечности. Однако, эта особая ситуация дает нам совсем не то , что мы ожидаем от более реалистичной модели, в которой учитывается также и гравитационная конденсация. С течением времени вещество, находящееся первоначально в виде рассеянного газа, будет конденсироваться в звездные галактики. В этом процессе большое число звезд испытают гравитационное сжатие и превратятся в белые карлики, нейтронные
Рис. 7.16.Для обычного газа повышение энтропии связано с увеличением степени однородности его распределения внутри ящика. Для гравитирующих систем имеет место обратная ситуация. Высокая энтропия соответствует гравитационному конденсату, а максимальная — образованию черной дыры
Может показаться странным, на первый взгляд, что конденсированные состояния дают большуюэнтропию, чем состояния с однородным распределением, особенно если вспомнить, что для газа в ящике его конденсированные состояния (например, случай, когда весь газ собирается в одном из углов ящика) имели низкуюэнтропию, в то время как однородноераспределение, соответствующее тепловому равновесию — имело высокую энтропию. При учете гравитации ситуация меняется на обратнуюблагодаря универсальности гравитационного притяжения. С течением времени, конденсация становится все более и более сильной и, в конце концов, множество сконденсировавшихся черных дыр соединяет свои сингулярности в финальной сингулярности большого коллапса. Такая конечная сингулярность не имеет ничего общего с тем идеализированным большим коллапсом, который имеет место в коллапсирующей ФРУ– модели, где действовало ограничение ВЕЙЛЬ= 0 . По мере накопления числа сконденсировавшихся объектов, тензор ВЕЙЛЬимеет тенденцию непрерывно увеличиваться [186] и, вообще говоря, ВЕЙЛЬ– > в конечной сингулярности. Посмотрите на рис. 7.17, где показана полная история замкнутой вселенной в соответствии с этой общей картиной.
186
Возникает искушение отождествить гравитационный вклад в энтропию системы с некоторой мерой вейлевской кривизны, но до сих пор ни одной подходящей меры не найдено. (Искомая мера, вообще говоря, должна была бы обладать нелокальными свойствами.) К счастью, в наших рассуждениях мы можем обойтись и без нее.
Рис, 7.17.Полная история замкнутой вселенной, которая начинается с однородного низкоэнтропийного большого взрыва с ограничением ВЕЙЛЬ= 0 и заканчивается высокоэнтропийным большим коллапсом — представляющим собой сгущение большого числа черных дыр — с условием ВЕЙЛЬ– >
Мы видим теперь, как становится возможной ситуация, когда сжимающаяся вселенная может не обладать низкой энтропией. Та «малость» энтропии Большого взрыва, которая обеспечивает нам выполнение второго начала, не была, таким образом, следствием одной только«малости» вселенной в момент взрыва! Если бы мы обратили во времени картину большого коллапса, к которой только что пришли, мы бы получили «большой взрыв» с чрезвычайно высокойэнтропией, где не было бы второго начала! По некоторым причинам, вселенная возникла в особом (низкоэнтропийном) состоянии, на которое было наложено условие типа ВЕЙЛЬ= 0 для ФРУ– моделей. И если бы подобного рода ограничение не имело места, то «намного более вероятной» могла бы оказаться ситуация, в которой как начальная, так и конечная сингулярности были бы высокоэнтропийного типа ВЕЙЛЬ– > (рис. 7.18).
Рис. 7.18.Если убрать ограничение ВЕЙЛЬ= 0 , то большой взрыв получится тоже высокоэнтропийным, с условием ВЕЙЛЬ– > . Такая вселенная была бы сплошь испещрена белыми дырами и в ней не выполнялось бы второе начало термодинамики — в полном противоречии с нашим опытом
В такой гипотетической вселенной, конечно же, не нашлось бы места для второго начала термодинамики!
Насколько особым был Большой взрыв?
Попробуем разобраться с вопросом о том, насколько ограничивающим для Большого взрыва было условие типа ВЕЙЛЬ= 0 . Для простоты (как и ранее) мы будем считать вселенную замкнутой. Для того чтобы составить ясную и конкретную картину, далее мы везде будем полагать, что число барионов В — т. е. общее число протонов и нейтронов, во вселенной составляет примерно
В= 10 80 .
(Не существует каких-то особых оснований для выбора именно этого значения, кроме тех эмпирических данных, которые приводят к нему как к нижнейоценке В. Эддингтон однажды заявил, что вычислил В точнои полученное
им значение оказалось близким к приведенному выше! Кажется, что сейчас уже никто не принимает всерьез эти вычисления, но значение 10 80 надежно утвердилось.) Если бы мы взяли большеезначение В(в действительности может оказаться, что ВЕЙЛЬ– > ), то величины, полученные нами в этом случае, оказалась бы еще поразительнеетех (и без того весьма экстраординарных чисел), к которым мы через несколько шагов придем!Попробуем представить себе фазовое пространство (Глава 5. «Фазовое пространство») всей вселенной! Каждая точка этого пространства потенциально соответствует определенному начальному состоянию, из которого вселенная могла начинать свою эволюцию. На рис. 7.19 мы условно изображаем Творца, который в своей деснице держит «булавку», чтобы отметить ею некую точку нашего фазового пространства.
Рис. 7.19.Для сотворения вселенной, близкой по своим свойствам к той, в которой мы живем, Творец ограничивает свой выбор исчезающе малым объемом в фазовом пространстве возможных вселенных, в рассматриваемом случае — всего около
Каждое положение булавки соответствует творению особой вселенной. Точность, с которой Творец создает какую-либо вселенную, напрямую связана с энтропией этой вселенной. Создать вселенную с высокой энтропией было бы относительно «легко», поскольку в этом случае в распоряжении Творца имеется большой объем фазового пространства, в который надо указать булавкой. (Напомним, что энтропия пропорциональна логарифму объема соответствующего фазового пространства.) Но чтобы создать вселенную в состоянии с низкой энтропией — так, чтобы в ней выполнялось второе начало термодинамики, — Творец должен направить булавку в гораздо меньший объем фазового пространства. Насколько малым должен быть этот объем, чтобы в результате творения получилась вселенная, напоминающая по своим свойствам ту, в которой мы живем? Для ответа на этот вопрос, мы должны обратиться к замечательной формуле, выведенной Якобом Бекенштейном [1972] и Стивеном Хокингом [1975], которая говорит о том, чему должна быть равна энтропия черной дыры.
Рассмотрим черную дыру и допустим, что площадь ее горизонта есть А. Формула Хокинга-Бекенштейнадля энтропии черной дыры гласит:
где k — константа Больцмана, с — скорость света, G — ньютоновская гравитационная постоянная и h — постоянная Планка, деленная на 2 . Самая существенная часть этой формулы заключена во множителе А/ 4 . Часть, стоящая в скобках, содержит только необходимые для соблюдения размерности физические константы. Таким образом, энтропия черной дыры оказывается пропорциональной площади ее поверхности. Для сферически симметричной черной дыры эта площадь оказывается пропорциональной квадрату массы этой дыры:
Объединяя это с формулой Бекенштейна — Хокинга, мы получаем, что энтропия черной дыры пропорциональна квадрату ее массы:
Таким образом, энтропия, приходящаяся на единицу массы( S ч.д./ m ) черной дыры, пропорциональна ее массе и оказывается тем больше, чем больше черная дыра. Следовательно, для заданной массы или, эквивалентно, — согласно формуле Эйнштейна Е = mc 2 , — для заданной энергии, наибольшая энтропия достигается тогда, когда вся материя сколлапсирует в черную дыру! Более того, энтропия системы двух черных дыр существенно возрастает, когда эти дыры сливаются в одну! Гигантские черные дыры, типа тех, которые, как полагают, находятся в центрах галактик, заключают в себе колоссальное количество энтропии — намного превосходящее те ее значения, которые встречаются в других физических ситуациях.
Утверждение о том, что максимум энтропии достигается при коллапсе всей массы в черную дыру, требует небольшого пояснения. Анализ термодинамики черных дыр, проведенный Хокингом, показывает, что с любой черной дырой можно связать некоторую ненулевую температуру. Одним из следствий этого является тот факт, что в состоянии с максимальной энтропией в черной дыре не может быть заключена вся масса-энергия; максимум энтропии достигается, когда черная дыра приходит в тепловое равновесие с «тепловым резервуаром излучения». Температура этого излучения оказывается действительно ничтожной для черных дыр с любым разумным размером. Так, к примеру, для черной дыры с массой порядка массы Солнца эта температура оказалась бы равной примерно 10 – 7К, что значительно ниже температур, достигнутых в настоящее время в лабораториях, и намного меньше температуры 2 , 7 Кмежгалактического пространства. Для черных дыр больших размеров температура Хокинга оказывается еще меньшей!