Чтение онлайн

ЖАНРЫ

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Пытливый математический ум сейчас спросит: «А как именно ведут себя эти два числа?» Имеются ли правила, описывающие медленный рост абсолютной ошибки или стремление относительной ошибки к нулю? Другими словами, если выкинуть из таблицы 14.1 вторую и четвертую колонки и рассмотреть получившуюся двухколоночную таблицу как «моментальный снимок» некоторой функции (колонки аргумент-значение), то что это будет за функция? Можно ли для нее получить формулу с волнами, как это было сделано для (x)?

Здесь-то на сцене и появляются нетривиальные нули дзета-функции. Они тесно связаны (способом, который мы рассмотрим ниже во всех математических подробностях) с остаточным членом.

Хотя в ТРПЧ говорится об относительной ошибке, исследования в этой области в большей степени имеют дело с абсолютной ошибкой. На самом деле неважно, какую из них рассматривать. Относительная ошибка есть просто абсолютная ошибка, деленная на (x), так что в любой момент несложно перейти от одной к другой. Итак, можно ли получить какие-нибудь результаты

об абсолютном остаточном члене Li (x) - (x)?

VII.

Взглянув на рисунок 7.6 и таблицу 14.1 , можно с достаточной уверенностью заключить, что абсолютная разность Li (x) - (x)положительна и возрастает. Численные свидетельства в пользу этого так убедительны, что Гаусс в своих собственных исследованиях полагал, что всегда так и происходит. Весьма вероятно, что исследователи поначалу соглашались с тем, или, по крайней мере, чувствовали уверенность в том, что (x)всегда меньше чем Li (x). (Относительно мнения Римана по этому поводу ясности нет.) Поэтому статья Литлвуда 1914 года оказалась сенсацией, ибо в ней было установлено, что, напротив, существуют такие числа x, что (x)больше чем Li (x). На самом деле доказано было гораздо большее.

Результат Литлвуда 1914 года

Разность Li (x) - (x)изменяется от положительной к отрицательной и обратно бесконечно много раз.

Если учесть, что (x)меньше, чем Li (x), для всех x, до которых смогли добраться даже самые мощные компьютеры, то где же находится первая точка перехода, первое «литлвудово нарушение», когда (x)становится равной, а затем и превосходит Li (x)?

В подобных ситуациях математики отправляются на поиски того, что они называют верхней границей, — такого числа N, для которого можно доказать, что, каким бы ни был точный ответ на данный вопрос, он во всяком случае будет меньше, чем N.Установленные верхние границы такого рода нередко оказываются много больше, чем реальный ответ [131] .

Так и обстояло дело с первой установленной верхней границей литлвудова нарушения. В 1933 году студент Литлвуда Сэмюель Скьюз показал, что если Гипотеза Римана верна, то переход должен наступать раньше, чем

, что представляет собой число из примерно 10 десять миллиардов триллионов триллионовцифр. Это не само число — это число цифрв том числе. (Для сравнения заметим, что общее количество всех атомов во Вселенной оценивается числом из примерно восьмидесяти цифр.) Этот монстр получил известность как «число Скьюза» — самое большое число, которое когда-либо до того следовало из математического доказательства. [132]

131

Разумеется, предпочтительнее знать точный ответ; но речь идет о том, что часто удается доказать лишь менее строгое ограничение. (Примеч. перев.)

132

В задачах такого типа имеются еще и нижние границы. Нижняя граница — это такое число N, для которого можно доказать, что, каков бы ни был точный ответ, он заведомо больше, чем N. В случае с литлвудовым нарушением, похоже, сделано куда меньше — можно думать, из-за того, что все знают, что точное значение числа, при котором происходит первое нарушение, необычайно велико. Делеглиз и Риват в 1996 г. установили в качестве нижней границы 10 18, а позднее довели нижнюю границу до 10 20, однако ввиду результата Бейса и Хадсона подобные нижние границы почти ничего не значат.

В 1955 году Скьюз улучшил свой результат, на этот раз даже не предполагая справедливости Гипотезы Римана, и оказалось, что новое число содержит 10 одна тысячацифр. В 1966 году Шерман Леман сумел понизить верхнюю границу до куда более разумного (по крайней мере, позволяющего себя записать) числа 1,165x10 1165(числа, другими словами, из каких-то 1166 цифр), а потом еще сильнее, до 6,658x10 370.

На момент написания книги (середина 2002 года) лучшее достижение принадлежит Картеру Бейсу и Ричарду Хадсону, которые также исходили из теоремы Лемана. [133] Они показали, что имеются литлвудовы нарушения в окрестности числа 1,39822x10 316, а также привели некоторые аргументы в пользу того, что это нарушение может оказаться первым. (Статья Бейса и Хадсона оставляет открытой маленькую лазейку для существования нарушений на более малых высотах, возможно, даже на столь низкой высоте, как 10 176. Они также установили существование грандиозной зоны нарушений вблизи числа 1,617x10 9608.)

133

Если

имена Бейса и Хадсона кажутся знакомыми, то это из-за того, что они упоминались в главе 8.iv в связи с отклонением Чебышева. На самом деле на очень глубоком уровне, определенно слишком глубоком, чтобы здесь о нем говорить, имеется родство между тенденцией функции Li (x)быть больше, чем (x), и чебышевскими отклонениями. В теории чисел эти два вопроса обычно рассматриваются совместно. В действительности в работе Литлвуда 1914 г. показано не только, что тенденция функции Li (x)быть больше, чем (x), нарушается бесконечно много раз, но и что тоже самое верно для чебышевских отклонений. По поводу некоторых недавних. весьма впечатляющих и глубоких результатов по этому вопросу см. статью Майкла Рубинстейна и Питера Сарнака Chebyshev's biasв журнале: Experimental Mathematics. 1994. Vol. 3. P. 173-197.

VIII.

Колебания остаточного члена Li (x) - (x)от положительных к отрицательным значениям и затем обратно происходящем не менее в пределах вполне определенных ограничений. Иначе не выполнялась бы ТРПЧ. Некоторые соображения по поводу природы этих ограничений возникли еще в результате усилий, направленных на доказательство ТРПЧ. Де ля Валле Пуссен включил в свое доказательство ТРПЧ некоторую оценку для функции, выражающей это ограничение. Пять лет спустя шведский математик Хельге фон Кох [134] доказал следующий ключевой результат, который я сформулирую в его современной записи.

134

Читателям популярной литературы по математике фон Кох более известен благодаря «кривой Коха». В этом контексте всегда опускают «фон» — ума не приложу, почему. (Кривая Коха — фрактальная кривая, которая нигде не имеет касательной, хотя всюду непрерывна. Три копии кривой Коха, расположенные вдоль сторон правильного треугольника, образуют «снежинку Коха». — Примеч. перев.)

Результат фон Коха 1901 года

Если Гипотеза Римана верна, то

(x)= Li( x) + ( x•ln x).

Уравнение здесь читается так: «Пи от икс равно интегральному логарифму от икс плюс большое от корня из икс, умноженного на логарифм икс». Теперь надо объяснить, что же такое «О большое». {3}

Глава 15. О большое и мебиусово мю

I.

Эта глава посвящена двум математическим темам, которые связаны с Гипотезой Римана, но помимо этого друг с другом никак не связаны. Эти темы — « большое» и мю-функция Мебиуса. Рассмотрим сначала большое.

II.

Когда Пауль Туран — великий венгерский математик, занимавшийся теорией чисел, — умирал от рака в 1976 году, его жена находилась у его постели. Она сообщила, что его последние слова были « большое от единицы». Математики передают эту историю с благоговением: «Заниматься теорией чисел до самого конца! Истинный математик!»

большое пришло в математику из книги Ландау 1909 года, влияние которой, как я уже рассказывал, было поистине огромным. Ландау на самом деле не изобрел большое. Он чистосердечно признается на странице 883 своего Handbuch, что позаимствовал его из трактата Пауля Бахманна 1894 года. Поэтому довольно несправедливо называть его «ландаувским Обольшим» равно как несправедливо и то, что многие математики, по-видимому, полагают, что именно Ландау его изобрел. большое присутствует повсеместно в аналитической теории чисел и даже просочилось оттуда в другие области математики.

большое — это способ наложить ограничение на величину функции, когда аргумент устремляется к (как правило) бесконечности.

Определение большого

Функция Aесть большое от функции B,если для достаточно больших аргументов величина Aникогда не превосходит некоторого фиксированного кратного величины B.

Вслед за Паулем Тураном рассмотрим большое от единицы. «Единица» здесь понимается как функция, причем функция простейшего вида. Ее график — горизонтальная прямая, проходящая на высоте 1 над горизонтальной осью. Для вообще любых аргументов значение этой функции равно… просто 1. Ну и что же тогда означает, что функция f(x)есть большое от единицы? По только что данному определению это означает, что, когда аргумент xуходит на бесконечность, f(x)никогда не превзойдет некоторого фиксированного кратного 1 — другими словами, график функции f(x)навсегда останется ниже некоторой горизонтальной прямой. Это полезная информация о данной нам функции f(x). Существует множество функций, для которых это не так. Это не так, например, для x 2и для xв любой положительной степени, ни для e xни даже для ln x.

Поделиться с друзьями: