Чтение онлайн

ЖАНРЫ

Пространство, время и движение. Величайшие идеи Вселенной
Шрифт:

Бывают и неупругие столкновения, при которых импульс сохраняется, но кинетическая энергия переходит в другую форму. Столкнем вместо бильярдных шаров два комка глины. Если в начальный момент их импульсы равны и направлены друг против друга, то есть

, то при столкновении комки немного деформируются и слипнутся, образовав один неподвижный ком. Суммарный импульс не изменился, а кинетическая энергия — да. Она перешла в тепло и механическое напряжение.

Раньше ученые, в том числе и сам Ньютон, не до конца понимали, что импульс и энергия — разные вещи. Они полагали, что существует

некая единая величина — «количество движения». Несложно объяснить, что такое импульс, в терминах механики Ньютона, в основе которой — прямолинейное и равномерное движение объектов, не подвергающихся воздействию сил. С энергией все не так просто. Впрочем, попытки были. Например, Готфрид Вильгельм Лейбниц (соперник Ньютона в области высшей математики) предложил новую величину — «vis viva», — которую он определил как mv2 и полагал важной для изучения движения.

Ситуацию прояснила Эмили дю Шатле — философ и физик из Франции, известная переводами книг Ньютона. Считая энергию независимой от импульса, но также сохраняющейся величиной, она провела опыт, задуманный голландским ученым Вильгельмом Гравезандом. Если бросить тяжелый шар в мягкую глину, он ожидаемо остановится в ней, полностью передав свой импульс земле. При этом в глине появится лунка, объем которой, как оказалось, зависит от квадрата скорости шара в момент удара, то есть от кинетической энергии. Именно ее шар и тратит на то, чтобы сделать лунку.

Возможно, вы слышали о «законе сохранения массы». Его считали верным, пока не появилась теория относительности. Согласно этой теории, импульс и энергия сохраняются (хотя их формулы несколько отличаются от написанных выше), масса же представляет собой особую форму энергии. В этом и заключается смысл знаменитого уравнения Эйнштейна — энергия неподвижного объекта (то есть при нулевой кинетической энергии) равна его массе, умноженной на квадрат скорости света:

(1.5)

Если для обычных тел закон сохранения массы можно считать достаточно точным приближением, то для частиц, скорость которых близка к скорости света, он не работает. Говоря о таких частицах, следует мыслить в терминах сохранения энергии [3] .

Почему существуют законы сохранения?

Ученые любят задавать вопросы. Мы хотим знать, почему яблоки падают с деревьев, почему кофе и сливки смешиваются, почему горит и гаснет огонь, но часто при этом находим ответы, которые порождают новые вопросы. Нужно всегда быть готовыми к тому, что цепочка однажды прервется, и мы услышим в ответ: «Так есть, потому что так есть». И с этим уже ничего не поделать.

3

Иногда говорят о «релятивистской массе», которая растет с увеличением скорости. Но это сложно, да и излишне. Лучше без усложнений считать массу объекта постоянной величиной, а его энергию — зависящей от скорости.

Так было и с законами сохранения. Однако, к счастью, в начале XX века была доказана теорема, которая установила связь этих законов с симметрией в природе. К такому замечательному выводу пришла Эмми Нётер, математик из Германии. Симметрия — это преобразование, которому может подвергнуться система при полном сохранении основных характеристик. Например, круг полностью симметричен относительно центра. Поэтому его можно повернуть на любой угол без внешних изменений. А вот квадрат сохраняет свой внешний вид только при повороте на угол, кратный 90°.

Теорема Нётер гласит, что любое плавное преобразование непрерывно симметричной системы связано с сохранением некоторой величины. Например, законы физики в целом симметричны при сдвигах в пространстве и времени. Мы можем провести опыт на одном месте, а затем повторить на другом, немного подождать и снова повторить. И мы получим один и тот же результат во всех этих случаях. Теорема Нётер связывает такую симметрию с уже известными нам законами сохранения. Неизменность при сдвигах в пространстве приводит к сохранению импульса, а при сдвигах во времени — к сохранению энергии. При этом важна размерность симметрии. Время одномерно, поэтому сохраняется лишь одна величина: энергия. Пространство трехмерно, мы можем перемещаться в любом из трех направлений. Поэтому импульс является вектором, который можно разложить на три компонента, по одному на каждое направление. В системах, где что-то вращается вокруг какой-то оси, появляется еще одна сохраняемая величина: момент

импульса
.

Рассматривая сдвиги в пространстве, сдвиги во времени и вращения, при которых система претерпевает пространственно-временные изменения, мы говорим о симметрии пространства-времени. В физике частиц и квантовой теории поля, которая изучает взаимодействие полей и их частей, существует понятие внутренней симметрии. Из-за нее сохраняются электрические заряды и другие свойства частиц.

Но есть одна важная тонкость. Кажущаяся нам симметрия законов физики нарушается, когда мы сами находимся внутри какой-то реальной системы. Например, Вселенная расширяется. Галактики постепенно отдаляются друг от друга, и в будущем расстояние между ними станет больше, чем было когда-то. Но если Вселенная изменяется при сдвигах во времени, значит, ее энергия не сохраняется. Если мы посчитаем суммарную энергию во всех известных нам формах материи (излучение, обычная материя, темная материя, темная энергия и т. д.), получится число, которое будет меняться со временем. Можно попробовать обойти этот факт, определив энергию в кривизне самого пространства-времени. Пока что такие попытки не дали нам положительных результатов. Поэтому нет ничего страшного в том, чтобы вычислить суммарную энергию «области пространства» или «всех объектов в какой-то области» и признать, что она не является постоянной.

Как можно заметить, законы сохранения — тема непростая, требует осторожных и тщательных размышлений. Это умение непременно потребуется нам при знакомстве с величайшими идеями во вселенной.

Философия сферической коровы

Законы сохранения очень важны с научной точки зрения и крайне полезны на практике. Но есть еще одна причина начать изучение физики именно с них, и прежде всего с сохранения импульса. Эти законы — отличный пример того, как работает важный методологический принцип: философия сферической коровы [4] .

4

В российской традиции обычно говорят о «сферическом коне в вакууме». История этого термина началась со школьного анекдота: «Одна лошадиная сила равна силе, изменяющей за одну секунду скорость на один метр в секунду абсолютно черного сферического коня в вакууме массой один килограмм и объемом один литр, хранящегося в палате мер и весов в Париже». — Примеч. ред.

Этим названием мы обязаны анекдоту, который любят рассказывать физики. На одной ферме коровы перестали давать молоко. Как фермер ни бился, что ни придумывал, — не помогает. Тогда он позвал на помощь приятеля: физика-теоретика. Тот долго смотрел на коров, что-то записывал, считал и, наконец, пришел к фермеру с радостной новостью.

— Я понял, в чем тут проблема, — сообщил он важно. — Допустим, что корова имеет форму сферы…

Не поняли юмора? Шутка не только в том, что корова не похожа на сферу, что рога, копыта и хвост — именно то, что делает ее коровой. В природе в принципе нет и не может быть сферических коров. Смысл в том, что физики делают такие допущения, чтобы упростить формулы и расчеты, но часто при этом выходят за рамки реального мира, в данном случае — области знаний, полезных обычному фермеру с его надоями.

Но анекдот знаменит не тем, что ужасно смешной. Я этого не говорил. Все дело в том, что пример с коровой и сферой показывает общий принцип, который действительно работает в физике, и работает невероятно хорошо. Чтобы решить сложную задачу, мы подменяем ее более простой, создаем идеальный случай, в котором нет множества трудностей. Затем, получив решение, мы усложняем задачу и выясняем, как эти трудности влияют на результат.

Именно так был открыт закон сохранения импульса. Аристотель не ошибался: чашка будет стоять на столе, пока кто-то не сдвинет ее, и прекратит движение, стоит лишь отпустить руку. Ибн Сина тоже был прав: чашка остановится из-за трения, а не в силу своей внутренней природы. И если трением пренебречь, представив себе, к примеру, стрельбу из лука в вакууме, окажется, что стрела полетит с постоянной скоростью. Такого рода рассуждения — хорошая отправная точка, с которой можно начать анализ физического явления. Сложности вроде трения можно учесть позже.

Поделиться с друзьями: